DOI QR코드

DOI QR Code

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics

수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향

  • Kim, Jae Kyung (Department of Horticulture, Kangwon National University) ;
  • Jang, Dong Cheol (Department of Horticulture, Kangwon National University) ;
  • Kang, Ho Min (Department of Horticulture, Kangwon National University) ;
  • Nam, Ki Jung (Cooperative Management Institute, Agricultural Cooperative University) ;
  • Lee, Mun Haeng (Fruit Vegetable Research Institute Chungchengnam-Do A.R.E.S) ;
  • Na, Jong Kuk (Division of Future Agriculture Convergence, Kangwon National University) ;
  • Choi, Ki Young (Division of Future Agriculture Convergence, Kangwon National University)
  • 김재경 (강원대학교 원예학과 대학원) ;
  • 장동철 (강원대학교 원예학과) ;
  • 강호민 (강원대학교 원예학과) ;
  • 남기정 (농협대학교 협동조합경영연구소) ;
  • 이문행 (충남농업기술원 과채 연구소) ;
  • 나종국 (강원대학교 미래농업융합학부) ;
  • 최기영 (강원대학교 미래농업융합학부)
  • Received : 2020.10.12
  • Accepted : 2020.12.10
  • Published : 2021.01.31

Abstract

This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

본 실험은 수경재배에서의 왕고들빼기 '선향'의 광도와 양액 농도가 광합성과 생육, 기능성 물질함량의 변화를 알아보고자 수행했다. 재배 환경은 온도 25±1℃, 상대습도 60±5%가 조절되는 생장 시스템에서 담액 수경 방식으로 재배하였다. 파종 14일 후, 광도 3수준(PPFD 100, 250, 500µmol·m-2·s-1)과 양액 농도 3수준(EC 0.8, 1.4, 2.0dS·m-1)를 조합하여 어린잎 채소 크기에 도달하였을 때 수확하여 분석하였다. 왕고들빼기 선향의 광합성율, 기공전도도, 증산율, 수분이용효율은 광도가 높을수록 증가하였다. 광합성율과 수분이용효울은 PPFD 500-EC 1.4, PPFD 500-EC 2.0 처리에서 가장 높았다. 엽록소 함량은 광도가 높을수록 감소하였며 엽록소 a/b 비율은 광도가 증가할수록 증가하였다. 잎수분함유량(LWC)와 비엽면적(SLA)는 광도가 높을수록 감소하여 부상관(p < 0.001)을 가졌다. 초장은 PPFD 100-EC0.8에서 가장 길었고, 엽수, 생체중, 건물중은 PPFD 500-EC2.0에서 가장 높았다. 기능성 물질인 안토시아닌과 총 페놀화합물은 PPFD 500-EC 1.4, 2.0 처리에서 가장 높았고, 항산화 소거 능력(DPPH)은 PPFD 250, 500에서 높았다. 생육과 기능성물질 함량 증진을 고려했을 때 왕고들빼기 수경재배 시 적정 광도와 EC는 PPFD 500-EC 2.0dS·m-1이며, 저광 조건인 PPFD 100, 250에서는 EC 0.8dS·m-1재배가 적합하였다.

Keywords

References

  1. Albright L., A. Both, and A. Chiu. 2000. Controlling greenhouse light to a consistent daily integral. Trans. ASAE. 43:421. https://doi.org/10.13031/2013.2721
  2. Cho Y.Y., K.Y. Choi, Y.B. Lee, and J.E. Son. 2012. Growth characteristics of sowthistle (Ixeris dentata Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Hort. Environ. Biotechnol. 53:368-372. https://doi.org/10.1007/s13580-012-0691-1
  3. Craver J.K., J.R. Gerovac, R. Lopez, and D.A. Kopsell. 2017. Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within Brassica microgreens. J. Amer. Soc. Horticultural Sci. 142:3-12. https://doi.org/10.21273/jashs03830-16
  4. Duysens L.N.M. 1952. Transfer of excitation energy in photosynthesis. PhD thesis. State Univ. Utrecht, The Netherlands.
  5. Easlon H.M., K.S. Nemali, J.H. Richards, D.T. Hanson, T.E. Juenger, and J.K. McKay. 2014. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynthesis research. 119:119-129. https://doi.org/10.1007/s11120-013-9891-5
  6. Evans J. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24:755-767. https://doi.org/10.1046/j.1365-3040.2001.00724.x
  7. Fan X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, and X. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic. 153:50-55. https://doi.org/10.1016/j.scienta.2013.01.017
  8. Fu Y., H. Li, J. Yu, H. Liu, Z. Cao, N.S. Manukovsky, and H. Liu. 2017. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Scientia horticulturae, 214:51-57. https://doi.org/10.1016/j.scienta.2016.11.020
  9. Gent M.P. 2014. Effect of daily light integral on composition of hydroponic lettuce. HortScience 49:173-179. https://doi.org/10.21273/hortsci.49.2.173
  10. Ghasemzadeh A., H.Z. Jaafar, and A. Rahmat. 2010. Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International J. Mol. Sci. 11:4539-4555. https://doi.org/10.3390/ijms11114539
  11. Gioia F.D., M. Renna, and P. Santamaria. 2017. Sprouts, microgreens and "baby leaf" vegetables. Springer. 403-432.
  12. Hetherington A.M. and F.I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature. 424:901-908. https://doi.org/10.1038/nature01843
  13. Jurik T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol. 70:1044-1048. https://doi.org/10.1104/pp.70.4.1044
  14. Khan S.R., R. Rose, D.L. Haase, and T.E. Sabin. 2000. Effects of shade on morphology, chlorophyll concentration, and chlorophyll fluorescence of four Pacific Northwest conifer species. New forests, 19:171-186. https://doi.org/10.1023/A:1006645632023
  15. Kim J.K., H.M. Kang, J.K. Na, and K.Y. Choi. 2019. Changes in growth characteristics and functional components of Lactuca indica L. 'Sunhyang' baby leaf vegetable by light Intensity and cultivation period. Kor. Hort. Sci. Technol. 37:579-588.
  16. Kim Y.H., H.J. Kim, J.W. Lee, and J.M. Kim. 2008. Growth of potato plug seedlings as affected by photosynthetic photon flux in a closed transplants production system. J. Biosystems Eng. 33:106-114. https://doi.org/10.5307/JBE.2008.33.2.106
  17. Kitaya Y., G. Niu, T. Kozai, and M. Ohashi. 1998. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience. 33:988-991. https://doi.org/10.21273/HORTSCI.33.6.988
  18. Korea Rural Community Broadcasting (KRCB). 2019. http://www.newskr.kr/news/articleView.html?idxno=30924. Accessed 05 Aug 2019.
  19. Kwack Y., D.S. Kim, and C. Chun. 2015. Growth and quality of baby leaf vegetables hydroponically grown in plant factory as affected by composition of nutrient solution. Protected Hortic. Plant Fac. 24:271-274 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.4.271
  20. Lee J.G. and E. Heuvelink. 2003. Simulation of leaf area development based on dry matter partitioning and specific leaf area for cut chrysanthemum. Annals of Botany 91:319-327. https://doi.org/10.1093/aob/mcg015
  21. Lee J.M. 2014. Vegetable sciences general. Hyangmunsa, 109-113.
  22. Lee S.C., J.H. Kim, S.M. Jeong, D.R. Kim, J.U. Ha, K.C. Nam, and D.U. Ahn. 2003. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agri. Food Chem. 51:4400-4403. https://doi.org/10.1021/jf0300285
  23. Lee S.Y., H.J. Kim, and J.H. Bae. 2011. Growth, vitamin C, and mineral contents of Sedum sarmentosum in soil and hydroponic cultivation. Kor. J. Hort. Sci. Technol. 29:195-200 (in Korean).
  24. Lichtenthaler H.K., A. Ac, M.V. Marek, J. Kalina, and O. Urban. 2007. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. 45:577-588. https://doi.org/10.1016/j.plaphy.2007.04.006
  25. Lobos G.A., J.B. Retamales, J.F. Hancock, J.A. Flore, N. Cobo, and A. del Pozo. 2012. Spectral irradiance, gas exchange characteristics and leaf traits of vaccinium corymbosum L. 'Elliott' grown under photo-selective nets. Environ. Exp. Bot. 75:142-149. https://doi.org/10.1016/j.envexpbot.2011.09.006
  26. Logan B.A., W.C. Stafstrom, M.J. Walsh, J.S. Reblin, and K.S. Gould. 2015. Examining the photoprotection hypothesis for adaxial foliar anthocyanin accumulation by revisiting comparisons of green-and red-leafed varieties of coleus (Solenostemon scutellarioides). Photosynthesis research. 124:267-274. https://doi.org/10.1007/s11120-015-0130-0
  27. Mackinney G. 1941. Absorption of light by Chlorophyll solution. J. Bio. Che. 140:315-322. https://doi.org/10.1016/S0021-9258(18)51320-X
  28. Noh H., J. Kim, S. Kim, I. Kim, and S. Choi. 2014. Effects of planting distances on the growth and yield of Lactuca indica L. 'Seonhyang'. HC2014:1129:127-130.
  29. Park J.H. 2014. A study on physiological activity of extracts in different organs from Lactuca indica L. MS thesis. Chosun Univ. p. 1-3.
  30. Park M.H. and Y.B. Lee. 1999. Effects of light intensity and nutrient level on growth and quality of leaf lettuce in a plant factory. Protected Hort. Plant Fac. 8:108-114.
  31. Park S.Y., S.B. Oh, S.M. Kim, Y.Y. Cho, and M.M. Oh. 2016. Evaluating the effects of a newly developed nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Horti. Environ. Biotechnol. 57:478-486. https://doi.org/10.1007/s13580-016-1060-2
  32. Perez-Lopez U., C. Sgherri, J. Miranda-Apodaca, F. Micaelli, M. Lacuesta, A. Mena-Petite, and A. Munoz-Rueda. 2018. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. Plant Physiol. Biochem. 123:233-241. https://doi.org/10.1016/j.plaphy.2017.12.010
  33. Rabino I. and A.L. Mancinelli. 1986. Light, temperature, and anthocyanin production. Plant Physiol. 81:922-924. https://doi.org/10.1104/pp.81.3.922
  34. Rural Development Administration (RDA). 2013. Standard farming manual-sprout and baby leaf vegetable. 99-103.
  35. Subhasree B., R. Baskar, R.L. Keerthana, R.L. Susan, and P. Rajasekaran. 2009. Evaluation of antioxidant potential in selected green leafy vegetables. Food chemistry. 115:1213-1220. https://doi.org/10.1016/j.foodchem.2009.01.029
  36. Yoon C.G. and H.K. Choi. 2011. A study on the various light source radiation conditions and use of LED illumination for plant factory. J. Kor. Institute of Illuminating and Electrical Installation Engineers 25:14-22. https://doi.org/10.5207/JIEIE.2011.25.10.014