Browse > Article
http://dx.doi.org/10.11626/KJEB.2020.38.3.404

Growth responses of kelp species Ecklonia cava to different temperatures and nitrogen sources  

Choi, Sun Kyeong (Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University)
Kang, Yun Hee (Department of Earth and Marine Sciences, Jeju National University)
Park, Sang Rul (Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University)
Publication Information
Korean Journal of Environmental Biology / v.38, no.3, 2020 , pp. 404-415 More about this Journal
Abstract
We investigated the seasonal variations in growth and physiological responses of the kelp species Ecklonia cava to different nitrogen sources to establish indoor culture conditions for mass production. Ecklonia cava was cultivated for 10 days in 16 combinations of seawater temperatures (15, 17, 21, and 25℃) and different nitrogen sources (control; NH-NH4+ 100 μM; NO-NO3- 100 μM; and NHNO-NH4+ 50 μM+NO3- 50 μM). The growth and growth rate of the blade were affected by temperature. The mean fresh weight and area-based daily growth rate were the highest (5.8±0.5 and 6.6±0.5% day-1, respectively) at 15℃ and the lowest (2.2±0.2 and 3.0±0.3% day-1, respectively) at 25℃. The daily growth rate was the highest in the NH and NO treatments and lowest in the control. The nitrate reductase activity of E. cava varied with water temperature (season). The highest activity was in the control (1.32±0.10 μmol NO2- g-1 dry weight h-1) and the lowest was in the NH treatment (0.25±0.02 μmol NO2- g-1 dry weight h-1). The photosynthetic pigment concentrations reached a maximum value in the NHNO treatment and a minimum value in the control. These results showed that water temperature played an important role in the cultivation of E. cava and that a single supply of NH4+ or NO3- may induce the accelerated growth of E. cava. The growth and physiological responses of E. cava to different nitrogen sources during each season provide valuable information for determining the optimal nitrogen source in E. cava cultivation under indoor conditions.
Keywords
Ecklonia cava; daily growth rate; different nitrogen source; water temperature; nitrate reductase activity;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Abreu MH, R Pereira, AH Buschmann, I Sousa-Pinto and C Yarish. 2011. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199.   DOI
2 Ahn O, RJ Petrell and PJ Harrison. 1998. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. J. Appl. Phycol. 10:333-340.   DOI
3 Ashkenazi DY, A Israel and A Abelson. 2019. A novel two-stage seaweed integrated multi-trophic aquaculture. Rev. Aquac. 11:246-262.   DOI
4 Berges JA. 1997. Miniview: algal nitrate reductases. Eur. J. Phycol. 32:3-8.   DOI
5 Besada V, JM Andrade, F Schultze and JJ Gonzalez. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 75:305-313.   DOI
6 Cabello-Pasini A, V Macias-Carranza, R Abdala, N Korbee and FL Figueroa. 2011. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). J. Appl. Phycol. 23:363-369.   DOI
7 Bryan GW and LG Hummerstone. 1973. Brown seaweed as an indicator of heavy metals in estuaries in south-west England. J. Mar. Biol. Assoc. U.K. 53:705-720.   DOI
8 Brzezinski MA, DC Reed, S Harrer, A Rassweiler, JM Melack, BM Goodridge and JE Dugan. 2013. Multiple sources and forms of nitrogen sustain year-round kelp growth: on the inner continental shelf of the Santa Barbara channel. Oceanography 26:114-123.   DOI
9 Buschmann AH, D Varela, M Cifuentes, M del Carmen Hernandez-Gonzalez, L Henriquez, R Westermeier and JA Correa. 2004. Experimental indoor cultivation of the carrageenophytic red alga Gigartina skottsbergii. Aquaculture 241:357-370.   DOI
10 Chapman ARO, JW Markham and K Luning. 1978. Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J. Phycol. 14:195-198.   DOI
11 Choa JH and JB Lee. 2000. Bioecological characteristics of coral habitats around Moonsom, Cheju Island, Korea I. Environment properties and community structures of phytoplankton. J. Korean Soc. Oceanogr. 5:59-69.
12 Chow F and MC de Oliveira. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): influence of different nitrogen sources. J. Appl. Phycol. 20:775-782.   DOI
13 Kim YD, JP Hong, HI Song, MS Park, TS Moon and HI Yoo. 2012. Studies on technology for seaweed forest construction and transplanted Ecklonia cava growth for an artificial seaweed reef. J. Environ. Biol. 33:969.
14 Corzo A and FX Niell. 1991. Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. J. Exp. Mar. Biol. Ecol. 146:181-191.   DOI
15 Kang JW. 1966. On the geographical distribution of marine algae in Korea. Bull. Pusan Fish. Coll. 7:1-125.
16 Kang SK. 2011. Economic analysis of the seaweed forest creation project: the case of Jeju Woodo Seokwang-ri. J. Fish. Bus. Admin. 42:37-55.
17 Kang YH, SR Park and IK Chung. 2011. Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae 26:97-108.
18 Kang YH, S Kim, SK Choi, HJ Lee, IK Chung and SR Park. 2020. A comparison of the bioremediation potential of five seaweed species in an integrated fish -seaweed aquaculture system: implication for a multi -species seaweed culture. Rev. Aquac. https://doi.org/10.1111/raq.12478   DOI
19 Kim S, YH Kang, TH Kim and SR Park. 2016. Recovery pattern and seasonal dynamics of kelp species, Ecklonia cava population formed following the large-scale disturbance. J. Korean Soc. Oceanogr. 21:103-111.
20 Kim S, SH Youn, HJ Oh, SK Choi, YH Kang, TH Kim, HJ Lee, KS Choi and SR Park. 2018. Stipe length as an indicator of reproductive maturity in the kelp Ecklonia cava. Ocean Sci. J. 53:595-600.   DOI
21 Kim YK, JY Lee, IS Kwak and JK Kim. 2020. Diffusion characteristics of Ecklonia cava spores around marine forest reefs. J. Korean Soc. Mar. Environ. Saf. 26:93-102.   DOI
22 Levy I and E Gantt. 1990. Development of photosynthetic activity in Porphyridium purpureum (rhodophyta) following nitrogen starvation. J. Phycol. 26:62-68.   DOI
23 Ko JC, JH Koo and MH Yang. 2008. Characteristics of ocean environmental factors and community structure of macrobenthos around Munseom, Jeju Island, Korea. Korean J. Malacol. 24:215-228.
24 Koirala P, HA Jung and JS Choi. 2017. Recent advances in pharmacological research on Ecklonia species: a review. Arch. Pharm. Res. 40:981-1005.   DOI
25 Korb RE and VA Gerard. 2000. Nitrogen assimilation characteristics of polar seaweeds from differing nutrient environments. Mar. Ecol. Prog. Ser. 198:83-92.   DOI
26 Lee W, G Ahn, JY Oh, SM Kim, N Kang, EA Kim, KN Kim, JB Jeong and YJ Jeon. 2016. A prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. Fish Shellfish Immunol. 51:313-320.   DOI
27 Lee Y and SY Kang. 2001. A catalogue of the seaweeds in Korea. Publishing Department of Cheju National University. Jeju, Korea.
28 Li JY, Y Murauchi, M Ichinomiya, Y Agatsuma and K Taniguchi. 2007. Seasonal changes in photosynthesis and nutrient uptake in Laminaria japonica (Laminariaceae; Phaeophyta). Aquacult. Sci. 55:587-597.
29 Li YX and SK Kim. 2011. Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: An overview. Food Sci. Biotechnol. 20:1461-1466.   DOI
30 Lobban CS and PJ Harrison. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge.
31 Luning K. 1993. Environmental and internal control of seasonal growth in seaweeds. Hydrobiologia 260/261:1-14.   DOI
32 Fairhead VA and AC Cheshire. 2004. Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar. Biol. 145:415-426.   DOI
33 Dawes CJ, J Orduna-Rojas and D Robledo. 1999. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl. Phycol. 10:419.   DOI
34 Dean PR and CL Hurd. 2007. Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand 1. J. Phycol. 43:1138-1148.   DOI
35 Duncan MJ and PJ Harrison. 1982. Comparison of solvents for extracting chlorophylls from marine macrophytes. Bot. Mar. 25:445-448.
36 Gal-Or S and A Israel. 2004. Growth responses of Pterocladiella capillacea (Rhodophyta) in laboratory and outdoor cultivation. J. Appl. Phycol. 16:195-202.   DOI
37 Gao X, H Endo, K Taniguchi and Y Agatsuma. 2013. Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J. Appl. Phycol. 25:269-275.   DOI
38 Gao X, H Endo, M Nagaki and Y Agatsuma. 2016. Growth and survival of juvenile sporophytes of the kelp Ecklonia cava in response to different nitrogen and temperature regimes. Fish. Sci. 82:623-629.   DOI
39 Gordillo FJL. 2012. Environment and algal nutrition. pp. 67-86. In: Seaweed Biology (Wiencke C and K Bischof eds.). Springer, Verlag Berlin Heidelberg.
40 Haroun R, Y Yokohama and Y Aruga. 1989. Annual growth cycle of the brown alga Ecklonia cava in central Japan. Sci. Mar. 53:349-356.
41 Hwang EK, YG Gong, IK Hwang, EJ Park and CS Park. 2013a. Cultivation of the two perennial brown algae Ecklonia cava and E. stolonifera for abalone feeds in Korea. J. Appl. Phycol. 25:825-829.   DOI
42 Heo SJ, SC Ko, SH Cha, DH Kang, HS Park, YU Choi, D Kim, WK Jung and YJ Jeon. 2009. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 23:1123-1130.   DOI
43 Hiraoka M and N Oka. 2008. Tank cultivation of Ulva prolifera in deep seawater using a new "germling cluster" method. J. Appl. Phycol. 20:97-102.   DOI
44 Hong CH and JH Choa. 2008. An experimental study on development of artificial reefs using volcanic stones for marine forests. J. Ocean Eng. Technol. 22:103-108.
45 Hwang EK, IK Hwang, EJ Park, YG Gong and CS Park. 2013b. Cultivation technique of Ecklonia cava Kjellman for restoration of natural resources. Korean J. Environ. Biol. 31:347-352.   DOI
46 Hwang JR, YH Kang, JH Oak, SR Lee and IK Chung. 2011. Effects of nitrogen form and light conditions on the nitrate reductase activity of Ulva pertusa (Chlorophyta) and Ecklonia cava (Phaeophyta). Korean J. Fish. Aquat. Sci. 44:64-70.   DOI
47 Kain JM. 1989. The seasons in the subtidal. Eur. J. Phycol. 24:203-215.   DOI
48 Kaladharan P. 2000. Artificial seawater for seaweed culture. Indian J. Fish. 47:257-260.
49 Harrison PJ and CL Hurd. 2001. Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah. Biol. Mar. 42:71-82.
50 Miller SM. 2003. Ecophysiology of Ecklonia radiata (Alariaceae: Laminariales) in Doubtful Sound, Fiordland. University of Otago. Dunedin, New Zealand.
51 Mizuta H and Y Maita. 1991. Effects of nitrate supply on ammonium assimilations in the blade of Laminaria japonica (Phaeophyceae). Bull. Fac. Fish., Hokkaido Univ. 42:107-114.
52 Navarro -Angulo L and D Robledo. 1999. Effects of nitrogen source, N: P ratio and N-pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture. Hydrobiologia 398:315-320.   DOI
53 Phillips JC and CL Hurd. 2003. Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Mar. Ecol. Prog. Ser. 264:31-48.   DOI
54 Neori A, MD Krom, SP Ellner, CE Boyd, D Popper, R Rabinovitch, PJ Davison, O Dvir, D Zuber and M Ucko. 1996. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141:183-199.   DOI
55 Ohno M. 1985. Marine forest-its ecology and constructing technology. Kaiyo Kagaku 17:706-713.
56 Park JK and JH Park. 2013. Estimation of solar radiation distribution considering the topographic conditions at Jeju island. J. Korean Soc. Agric. Eng. 55:39-48.   DOI
57 Pritchard DW, CL Hurd, J Beardall and CD Hepburn. 2015. Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga. J. Phycol. 51:277-287.   DOI
58 Rees TAV. 2003. Safety factors and nutrient uptake by seaweeds. Mar. Ecol. Prog. Ser. 263:29-42.   DOI
59 Schiewer S and MH Wong. 1999. Metal binding stoichiometry and isotherm choice in biosorption. Environ. Sci. Technol. 33:3821-3828.   DOI
60 Sahoo D, M Ohno and M Hiraoka. 2002. Laboratory, field and deep seawater culture of Eucheuma serra -a high Lectin yielding red alga. Algae 17:127-133.   DOI
61 Seely GR, MJ Duncan and WE Vidaver. 1972. Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 12:184-188.   DOI
62 Serisawa Y, Y Yokohama, Y Aruga and J Tanaka. 2001. Photosynthesis and respiration in bladelets of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions. Phycol. Res. 49:1-11.   DOI
63 Teichberg M, LR Heffner, S Fox and I Valiela. 2007. Nitrate reductase and glutamine synthetase activity, internal N pools, and growth of Ulva lactuca: responses to long and short-term N supply. Mar. Biol. 151:1249-1259.   DOI
64 Serisawa Y, M Aoki, T Hirata, A Bellgrove, A Kurashima, Y Tsuchiya, T Sato, H Ueda and Y Yokohama. 2003. Growth and survival rates of large -type sporophytes of Ecklonia cava transplanted to a growth environment with small-type sporophytes. J. Appl. Phycol. 15:311-318.   DOI
65 Shibata T, K Ishimaru, S Kawaguchi, H Yoshikawa and Y Hama. 2007. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 20:705-711.   DOI
66 Stewart JG. 1984. Vegetative growth rates of Pterocladia capillacea (Gelidiaceae, Rhodophyta). Bot. Mar. 27:85-92.   DOI
67 Wi MY, EK Hwang, SC Kim, MS Hwang, JM Baek and CS Park. 2008. Regeneration and maturation induction for the free-living gametophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta). Korean J. Fish. Aquat. Sci. 41:381-388.   DOI
68 Tominaga H, Y Serisawa and M Ohno. 2004. Seasonal changes in net production of the bladelets and size of the proximal blade of Ecklonia cava in Tosa Bay, Kochi Prefecture. Jpn. J. Phycol. 52:13-19.
69 Turpin DH. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27:14-20.   DOI
70 Weidner M and H Kiefer. 1981. Nitrate reduction in the marine brown alga Giffordia mitchellae (Harv.) Ham. Z. Pjlanzenphysiol. Bd. 104:341-351.   DOI
71 Wiencke C and K Bischof. 2012. Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, Berlin.
72 Wijesekara I, NY Yoon and SK Kim. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 36:408-414.   DOI
73 Zimmerman RC and JN Kremer. 1984. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42:591-604.   DOI
74 Wijesinghe WAJP and YJ Jeon. 2012. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int. J. Food Sci. Nutr. 63:225-235.   DOI
75 Yokohama Y, J Tanaka and M Chihara. 1987. Productivity of the Ecklonia cava community in a bay of Izu Peninsula on the Pacific Coast of Japan. Bot. Mag. Tokyo 100:129-141.   DOI
76 Yong YS, WTL Yong and A Anton. 2013. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 25:1831-1834.   DOI
77 Yoshida T, K Yoshinaga and Y Nakajima. 2000. Check list of marine algae of Japan (revised in 2000). Jpn. J. Phycol. 48:113-166.
78 Young EB, JA Berges and MJ Dring. 2009. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiol. Plant. 135:400-411.   DOI