Browse > Article
http://dx.doi.org/10.12791/KSBEC.2022.31.3.194

Growth Characteristics of Tomatoes Grafted with Different Rootstocks Grown in Soil during Winter Season  

Lee, Hyewon (Department of Vegetable crops, Korea National University of Agriculture and Fisheries)
Lee, Jun Gu (Department of Horticulture, University of Agriculture & Life Sciences, Jeonbuk National University)
Cho, Myeong Cheoul (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
Hwang, Indeok (R&D Center, Bunongseed Co., Ltd.)
Hong, Kue Hyon (Department of Vegetable crops, Korea National University of Agriculture and Fisheries)
Kwon, Deok Ho (Department of Vegetable crops, Korea National University of Agriculture and Fisheries)
Ahn, Yul Kyun (Department of Vegetable crops, Korea National University of Agriculture and Fisheries)
Publication Information
Journal of Bio-Environment Control / v.31, no.3, 2022 , pp. 194-203 More about this Journal
Abstract
Cultivation of tomatoes in Korea grown in soil covers 89% of the total area for tomato cultivation. Tomatoes grown in soil often encounter various environment stresses including not only salt stress and soil-borne diseases but also cold stress in the winter season. This study was conducted to comparatively analyze the performance of rootstocks with cold stress by measuring the growth, yield, and photosynthetic efficiency in tomatoes grown in soil. The rootstocks were used 'Powerguard', 'IT173773', and '20LM' for the domestic rootstock cultivars and 'B-blocking' for a control cultivar. The tomato cultivar 'Red250' was used as the scion and the non-grafted tomatoes. Stem diameter, flowering position, leaf length, and leaf width were investigated for the growth parameters. The stem diameter of the non-grafted tomatoes decreased by 15% compared to the grafted tomatoes at 80 days after transplanting when exposed to low temperatures of 9-14℃ for 14 days. The leaf length and width of the non-grafted tomatoes were the lowest with 42.4 cm and 41.8 cm at 80 days after transplanting. The total yield per plant was the highest in tomato plants grafted on 'Powerguard' with 1,615 g and lowest in non-grafted tomatoes with 1,299 g. As the result of measuring the chlorophyll fluorescence parameters, PIABS and DI0/RC, which mean the performance index and dissipated energy flux, 'Powerguard' was the highest with 3.73 in PIABS and the lowest with 0.34 in DI0/RC, whereas non-grafted tomatoes was the lowest with 2.62 in PIABS and the highest with 0.41 in DI0/RC at 80 days after transplanting. The stem diameter has positive correlation with PIABS, while it has negative correlation with DI0/RC. The results indicate that can be analyzed by chlorophyll fluorescence parameters can be used for analyzing the differences in the growth of tomato plants grafted on different rootstocks when exposed to cold stress.
Keywords
chlorophyll fluorescence; cold stress; stem diameter; plant vigor; Solanum lycopersicum L.;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Galvez A., A. Albacete, C. Martinez-Andujar, F.M. Amor, and J. Lopez-Marin 2021, Contrasting rootstock-mediated growth and yield responses in salinized pepper plants (Capsicum annuum L.) are associated with change in the hormonal balance. Int J Mol Sci 22:3297. doi:10.3390/ijms22073297   DOI
2 Kim S.E., S.Y. Sim, S.D. Lee, and Y.S. Kim 2010, Appropriate root-zone temperature control in perlite bag culture of tomato during winter season. Korean J Hortic Sci Technol 28:783-789. (in Korean)
3 Aazami M.A., M. Asghari-Aruq, M.B. Hassanpouraghdam, S. Ercisli, M. Baron, and J. Sochor 2021, Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants 10:1877. doi:10.3390/plants10091877   DOI
4 Bristow S.T., L.H. Hernandez-Espinoza, M. Bonarota, and F.H. Barrios-Masias 2021, Tomato rootstocks mediate plant-water relations and leaf nutrient profiles of a common scion under suboptimal soil temperatures. Front Plant Sci 11:618488. doi:10.3389/fpls.2020.618488   DOI
5 Leonardi C., and F. Giuffrida 2006, Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Eur J Hortic Sci 71:97-101.
6 Lee H., J.G. Lee, K.H. Hong, D.H. Kwon, M.C. Cho, I. Hwang, and Y.K. Ahn 2021, Improving growth and yield in cherry tomato by using rootstocks. J Bio-Env Con 30:196-205. (in Korean) doi:10.12791/KSBEC.2021.30.3.196   DOI
7 Lee J.M., and M. Oda 2002, Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61-124. doi:10.1002/9780470650851.ch2   DOI
8 Ajigboye O.O., L. Bousquet, E.H. Murchie, and R.V. Ray 2016, Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Funct Plant Biol 43:356-369. doi:10.1071/FP15280   DOI
9 Baghbani F., R. Lotfi, S. Moharramnejad, A. Bandehagh, M. Roostaei, A. Rastogi, and H.M. Kalaji 2019, Impact of Fusarium verticillioides on chlorophyll fluorescence parameters of two maize lines. Eur J Plant Pathol 154:337-346. doi:10.1007/s10658-018-01659-x   DOI
10 Baker N.R., and E. Rosenqvist 2004, Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. doi:10.1093/jxb/erh196   DOI
11 Bussotti F., R. Desotgiu, C. Cascio, M. Pollastrini, E. Gravano, G. Gerosa, R. Marzuoli, C. Nali, G. Lorenzini, E. Salvatori, F. Manes, M. Schaub, and R.J. Strasser 2011, Ozone stress in woody plants assessed with chlorophyll a fluorescence: A critical reassessment of existing data. Environ Exp Bot 73:19-30. doi:10.1016/j.envexpbot.2010.10.022   DOI
12 Force L., C. Critchley, and J.J.S. van Rensen 2003, New fluorescence parameters for monitoring photosynthesis in plants. Photosynth Res 78:17-33. doi:10.1023/A:1026012116709   DOI
13 Govindjee 1995, Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131-160.   DOI
14 Suchoff D.H., P. Perkins-Veazie, H.W. Sederoff, J.R. Schultheis, M.D. Kleinhenz, F.J. Louws, and C.C. Gunter 2018, Grafting the indeterminate tomato cultivar Moneymaker onto multifort rootstock improves cold tolerance. HortScience 53:1610-1617. doi:10.21273/HORTSCI13311-18   DOI
15 Ntatsi G., D. Savvas, V. Papasotiropoulos, A. Katsileros, R.M. Zrenner, D.K. Hincha, E. Zuther, and D. Schwarz 2017, Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants. Front Plant Sci 8:911. doi:10.3389/fpls.2017.00911   DOI
16 Rural Development Administration (RDA) 2018, Tomato. Rural Development Administration, Jeonju, Korea, pp 74-144. (in Korean)
17 Sharma V., P. Kumar, P. Sharma, N.D. Negi, A. Singh, P.K. Sharma, N.S. Dhillon, and B. Vats 2019, Rootstock and scion compatibility studies in tomato under protected conditions. Int J Curr Microbiol App Sci 8:1188-1197. doi:10.20546/ijcmas.2019.805.135   DOI
18 Soe D.W., Z.Z. Win, A.A. Thwe, and K.T. Myint 2018, Effect of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). J Agric Res 5:30-38
19 Stanghellini C., B.V. Ooster, and E. Heuvelink 2019, Greenhouse horticulture technology for optimal crop production. Wageningen Academic Publishers, Wageningen, The Netherlands. doi:10.3920/978-90-8686-879-7   DOI
20 Thach L.B., A. Shapcott, S. Schmidt, and C. Critchley 2007, The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress response. Photosynth Res 94:423-436. doi:10.1007/s11120-007-9207-8   DOI
21 Kalaji H.M., A. Jajoo, A. Oukarroum, M. Brestic, M. Zivcak, I.A. Samborska, M.D. Cetner, I. Lukasik, V. Goltsev, and R.J. Ladle 2016, Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. doi:10.1007/s11738-016-2113-y   DOI
22 Thimijan R.W., and R.D. Heins 1983, Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18:818-822.   DOI
23 Thwe A., and P. Kasemsap 2014, Quantification of OJIP fluorescence transient in tomato plants under acute ozone stress. Kasetsart J - Nat Sci 48:665-675.
24 Lee H., K.H. Hong, D.H. Kwon, M.C. Cho, J.G. Lee, I. Hwang, and Y.K. Ahn 2020, Changes of growth and yield by using rootstocks in tomato. Protected Hort Plant Fac 29:456-463. (in Korean) doi:10.12791/KSBEC.2020.29.4.456   DOI
25 Harel D., H. Fadida, A. Slepoy, S. Gantz, and K. Shilo 2014, The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 4:167-177. doi:10.3390/agronomy4010167   DOI
26 Healey J.F. 1993, Statics, a tool for social research. Wadsworth Incorporated, Belmont, CA, USA.
27 Kalaji H.M., Govindjee, K. Bosa, J. Koscielniak, and K. Zuk-Golaszewska 2011, Effect of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64-72. doi:10.1016/j.envexpbot.2010.10.009   DOI
28 Korean Statistical Information Service (KOSIS) 2022, MAFRA, https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114018_005&conn_path=I2, Accessed 10 June 2022. (in Korean)
29 Yang E.Y., S.N. Rajametov, M.C. Cho, H.B. Jeong, and W.B. Chae 2021, Factors affecting tolerance to low night temperature differ by fruit types in tomato. Agriculture 11:681. doi:10.3390/agriculture11070681   DOI
30 Latifah E., A. Krismawati, M. Saeri, Z. Arifin, B. Warsiati, D. Setyorini, P.E.R. Prahardini, H. Subagio, D. Sihombing, S.S Antarlina, E. Widaryanto, Ariffin, and M.D. Maghfoer 2021, Analysis of plant growth and yield in varieties of tomato (Solanum lycopersicum L.) grafted onto different eggplant rootstocks. Hindawi Int J Agron 2021:1-11. doi:10.1155/2021/6630382   DOI
31 Yoo S.Y., Y.H. Lee, S.H. Park, K. Choi, J.Y. Park, A.R. Kim, S.M. Hwang, M.J. Lee, T.S. Ko, and T.W. Kim 2013, Photochemical response analysis on drought stress for red pepper (Capsicum annuum L.). Korean J Soil Sci Fert 46:659-664. (in Korean) doi:10.7745/KJSSF.2013.46.6.659   DOI
32 Zhang L., G. Zhang, H. Li, and G. Sun 2014, Eco-physiological responses of Scirpus planiculmis to different water-salt conditions in Momoge Wetland. Pol J Envion Stud 23:1813-1820.
33 Zivcak M., M. Brestic, K. Olsovska, and P. Slamka 2008, Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ 54:133-139. doi:10.17221/392-PSE   DOI
34 Stradiot P., and P. Battistel 2003, Improved plant management with localized crop heating and advice on distance in the Mediterranean climate. Acta Hortic 614:461-467. doi:10.17660/ActaHortic.2003.614.69   DOI
35 Lee J.B., S.C. Koh, B.Y. Moon, I.H. Park, H.B. Park, and H.S. Chun 2016, Plant physiology (Korean edition). Lifescience, Seoul, Korea, pp 126. (in Korean)
36 Oh S., and S.C. Koh 2005, Analysis of O-J-I-P transients from four subtropical plant species for screening of stress indicators under low temperature. J Environ Sci Int 14:389-395. (in Korean) doi:10.5322/JES.2005.14.4.389   DOI
37 Ploeg D.V., and E. Heuvelink 2005, Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652-659. doi:10.1080/14620316.2005.11511994   DOI
38 Schwarz D., Y. Rouphael, G. Colla, and J.H. Venema 2010, Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci Hortic 127:162-171. doi:10.1016/j.scienta.2010.09.016   DOI