• Title/Summary/Keyword: Photoluminescence spectra

Search Result 472, Processing Time 0.021 seconds

Comparison of In-situ Er-doped GaN with Er-implanted GaN Using Photoluminescence and Photoluminescence Excitation Spectroscope (In situ Er 도핑된 GaN와 Er이 이온 주입된 GaN의 PL과 PLE 비교에 대한 연구)

  • 김현석;성만영;김상식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy have been performed at 6 K on the 1540 nm $^4$I$\_$(13/2)/\longrightarrow$^4$I$\_$(15/2)/ emission of Er$\^$+3/ in in situ Er-doped GaN The PL and PLE spectra of in situ Er-doped GaN are compared with those of Er-implanted GaN in this study. The lineshapes of the broad PLE absorption bands and the broad PL bands in the spectra of the in situ Er-doped GaN are similar to those in Er-doped glass rather than in the Er-implanted GaN. The PL spectra of this in situ Er-doped GaN are independent of excitation wavelength and their features are significantly different from the site-selective PL spectra of the Er-implanted GaN. These PL and PLE studies reveal that a single type of Er$\^$3+/ sites is present in the in situ Er-doped GaN and these Er sites are different from those observed in the Er-implanted GaN. In addition, the comparison of the PL single strength illustrates that the excitation of Er$\^$3+/ sites through the energy absorption of defects in Er-implanted GaN.

Properties of Silicon for Photoluminescence

  • Baek, Dohyun
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.113-127
    • /
    • 2014
  • For more than five decades, silicon has dominated the semiconductor industry that supports memory devices, ICs, photovoltaic devices, etc. Photoluminescence (PL) is an attractive silicon characterization technique because it is contactless and provides information on bulk impurities, defects, surface states, optical properties, and doping concentration. It can provide high resolution spectra, generally with the sample at low temperature and room-temperature spectra. The photoluminescence properties of silicon at low temperature are reviewed and discussed in this study. In this paper, silicon bulk PL spectra are shown in multiple peak positions at low temperature. They correspond with various impurities such as In, Al, and Be, phonon interactions, for example, acoustical phonons and optical phonons, different exciton binding energies for boron and phosphorus, dislocation related PL emission peak lines, and oxygen related thermal donor PL emissions.

Synthesis and Photoluminescence Studies on Sr1-xBaxAl2O4 : Eu2+, Dy3+

  • Ryu, Ho-Jin;Singh, Binod Kumar;Bartwal, Kunwar Singh
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.146-149
    • /
    • 2008
  • Strontium-substituted $Sr_{1-x}Ba_xAl_2O_4:Eu^{2+},\;Dy^{3+}$ compositions were prepared by the solid state synthesis method. These compositions were characterized for their phase, crystallinity and morphology using powder x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Photoluminescence properties were investigated by measuring excitation spectra, emission spectra and decay time for varying Ba/Sr concentrations. Photoluminescence results show higher luminescence and long decay time for $Sr_{1-x}Ba_xAl_2O_4:Eu^{2+},\;Dy^{3+}$(x=0). This is probably due to the influence of the 5d electron states of $Eu^{2+}$ in the crystal field. Long persistence was observed for these compositions due to $Dy^{3+}$ co-doping.

Spectroscopic Characteristics of Gemstones with Color Change Effect (변색 효과 보석들의 분광학적 특성)

  • Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • The luminescence and fluorescence were investigated by photoluminescence spectroscopy for six gemstones which exhibit color change effect. The shape of luminescence peaks appears different when observed by a photoluminescence spectroscopewith a 514 nm Ar laser source. However, it was not possible to observe the difference in the spectra between the natural and synthetic origins for the same type of gemstones. It was found that the photoluminescence spectrum was related to the crystal structure of the stones. Photoluminescence spectra using a 325 nm He-Cd source reveal that fluorescence is relatively strong for synthetic alexandrite, synthetic color change sapphire and natural alexandrite comparing to the rest of gemstones examined.

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions (페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석)

  • Cho, Hyeonah;Lee, Seungmin;Noh, Jun Hong
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Photoluminescence from silicon nanocrystals in silicon ion implanted SiO2 layers (실리콘 이온주입 SiO2층의 나노결정으로 부터의 광루미네센스)

  • Kim, Kwang-Hee;Oh, Hang-Seok;Jang, Tae-Su;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • Photoluminescence(PL) properties of $Si^+$-implanted $SiO_2$ film, which was thermally grown on c-Si substrate, is reported. We have compared room temperature photoluminescence (PL) spectra of the samples which was made in several kinds of implantation, subsequent annealing and $SiO_2$ film thickness. XRD data was correlated with the PL spectra. Silicon nanocrystals in $SiO_2$ film is considered as the origin of the photoluminescence. PL spectra was investigated after wet etching of the $SiO_2$ film by using BOE (Buffered Oxide Etchant) at every one minute. PL peak wavelength was varied as the etching is proceeded. These results indicate that the quantity and the distribution of dominant size of Si nanocrystals in $SiO_2$ film seem to have a direct effect on PL spectrum.

Annealing effect of Si nanocrystallites thin films (실리콘 나노결정 박막의 후열처리 효과 연구)

  • Jeon, Kyung-Ah;Kim, Jong-Hoon;Choi, Jin-Baek;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.88-91
    • /
    • 2003
  • Si nanocrystallites thin films have been fabricated by pulsed laser deposition using a Nd:YAG laser. After deposition, samples were annealed at the temperature range of 400 to $800^{\circ}C$. Hydrogen passivation was then performed in the forming gas ($95%N_{2}+5%H_{2}$) at $500^{\circ}C$. Strong violet-indigo photoluminescence has been observed at room temperature on nitrogen ambient-annealed Si nanocrystallites. As a result of photoluminescence spectra and infrared absorption spectra, we conclude that the violet-indigo PL efficiency is related with oxygen vacancy in the $SiO_x$(x= 1.6-1.8) matrix.

  • PDF

Photoluminescence Properties of Green Phosphor Y1-xBO3:Tbx3+ Synthesized by Solid-state Reaction Method (고상 반응법으로 제조한 녹색 형광체 Y1-xBO3:Tbx3+의 형광 특성)

  • Cho, Shin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.659-663
    • /
    • 2011
  • [ $Y_{1-x}BO_3:Tb_x^{3+}$ ]ceramic phosphors were synthesized with changing the concentration of $Tb^{3+}$ at a sintering temperature of $1,100^{\circ}C$ and a reduction temperature of $950^{\circ}C$ by using a solid-state reaction method. The crystal structure, surface morphology, and photoluminescence properties of the phosphors were investigated as a function of $Tb^{3+}$ ion concentration by using XRD (x-ray diffractometer), scanning electron microscopy, and photoluminescence spectrophotometry, respectively. The XRD results showed that the main peak of the phosphor powders occurs at (101) plane. As for the photoluminescence properties, the excitation spectra showed the broad band centered at 306 nm and the emission intensity of the spectra peaked at 543 nm indicated a significant decrease as the concentration of $Tb^{3+}$ ion is increased.

Photoluminescence and Photoluminescence Excitation Spectra of Mg-codoped GaN:Er (Mg가 첨가된 GaN:Er 발광 현상에 관한 연구)

  • 김상식;성만영;홍진기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.33-38
    • /
    • 2000
  • The ~1540 nm Er$^{3+}$ photoluminescence (PL) and photoluminescence excitation (PLE) spectra of Er-implanted Mg-codoped GaN (GaN:Er+Mg) exhibit that the excitation efficiency of a specific Er$^{3+}$ center among different Er$^{3+}$ centers existing in Er-implanted GaN is selectively enhanced, compared to Er-implanted undoped GaN (GaN:Er). In GaN:Er+Mg, the 1540 nm PL peaks characteristic of the so-called "violet-pumped" Er$^{3+}$ center and the ~2.8-3.4 eV (violet) PLE band are significantly strengthened by the Mg-doping. The intra-f absorption PLE bands associated with this "violet-pumped" center are also enhanced by this doping. The 1540 nm PL peaks originating from the violet-pumped center dominate the above-gap-excited Er$^{3+}$ PL spectrum of GaN:Er+Mg, whereas it was unobservable under above-gap excitation in GaN:Er. All of these results indicate that Mg doping increases the efficiency of trap-mediated excitation of Er$^{3+}$ emission in Er-implanted GaN.planted GaN.

  • PDF

Improved Photoluminescence from Light-Emitting Silicon Material by Surface Modification

  • 김동일;이치우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1019-1023
    • /
    • 1995
  • A light-emitting silicon material was prepared by electrochemical etching of n-Si single crystal wafers in a solution of hydrofluoric acid and ethanol. Visible photoluminescence from the silicon was inhomogeneous and decayed rapidly in the ambient laboratory conditions or with photoirradiation. Substantial improvements in photoluminescence which include little-dependent luminescence peak energy with excitation energy variation and longer-lasting room temperature visible photoluminescence were achieved when the surface of photoluminescent silicon material was derivatized with the surface modifier of octadecylmercaptan. Surface modification of the photoluminescent silicon was evidenced by the measurements of contact angles of static water drops, FT-IR spectra and XPS data, in addition to changed photoluminescence. Similar improvements in photoluminescence were observed with the light-emitting silicon treated with dodecylmercaptan, but not with octadecane. The present results indicate that sulfurs of octadecylmercaptans or dodecylmercaptans appear to coordinate the surface Si atoms of LESi and perturb the surface states to significantly change the luminescent characteristics of LESi.