• Title/Summary/Keyword: Photoelectrochemical water oxidation

Search Result 24, Processing Time 0.024 seconds

Cupric oxide thin film as an efficient photocathode for photoelectrochemical water reduction

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • Preparing various types of thin films of oxide semiconductors is a promising approach to fabricate efficient photoanodes and photocathodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility of an efficient photocathode for PEC water reduction of a p-type oxide semiconductor cupric oxide (CuO) thin film prepared via a facile method combined with sputtering Cu metallic film on fluorine-doped thin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Cu metallic film in dry air. Characterization of the structural, optical, and PEC properties of the CuO thin film prepared at various Cu sputtering powers reveals that we can obtain an optimum CuO thin film as an efficient PEC photocathode at a Cu sputtering power of 60 W. The photocurrent density and the optimal photocurrent conversion efficiency for the optimum CuO thin film photocathode are found to be -0.3 mA/cm2 and 0.09% at 0.35 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for sunlight-driven hydrogen generation using a facile method.

ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes (전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구)

  • Yi, Hwanpyo;Jung, Hyuck;Kim, Okkil;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Young;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk;Lee, Eung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 1992
  • For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on $TiO_2$ and Ti by electrodeposition. Also $A1_2O_3$ and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(${\eta}$) was 0.98% for flame oxidized electrode($1200^{\circ}C$ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode($800^{\circ}C$ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The $In_2O_3$ coated $TiO_2$ exhibits 0.8% of photoelectrochemical efficiency but much higher value of ${\eta}$ was obtained with the Increase of applied blas voltage. However, $Al_2O_3$ or NiO coated $TiO_2$ shows much low value of ${\eta}$. The efficiency was dependent on the presence of the metallic interstitial compound $TiO_{0+x}$(x<0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.

  • PDF

Preparation of graphene by chemical exfoliation for application to the photoelectrochemical cell (광전기화학 셀 적용을 목적으로 하는 화학적 박리법을 통한 그래핀의 제조)

  • Yoon, Sang-Hyeok;Lee, Dae-Won;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.59-65
    • /
    • 2015
  • As the fossil fuels are depleted nowadays, development of alternative energies is absolutely required in the world. Efficient production of hydrogen by water-splitting using solar energy can be one of the methods to solve the global energy and environmental problems. But this method has a problem of low conversion efficiency. The application of graphene can be one method to help increase the conversion efficiency. For this reason, mass production of high quality graphene is required. In this study, we prepared graphene using the chemical exfoliation method. We applied the Hummer's method and Tour's method to oxidize the graphite and could get the different Graphene Oxide(GO) from different process conditions. We also tried to convert the GO to graphene by thermal reduction and could remove functional group of GO effectively. The control of oxidation conditions was quite important to obtain the high quality graphene.

  • PDF

Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells (염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발)

  • Park, Jeong-Hyun;Kim, Jae-Hong;Ahn, Kwang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

Oxidation of Organic Compounds through the Electrochemical Reaction Using $TiO_{2}$ Photocatalytic Membranes ($TiO_{2}$ 광촉매 막의 전기화학 반응에 의한 유기물의 산화)

  • 현상훈;이기홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.101-108
    • /
    • 1996
  • The oxidation/degradation efficiency of formic acid through the photoelectrochemical reaction has been investigated as a basic research in order to develope the process for degrading toxic organic compounds dissolved in water. A $TiO_{2}$ photoelectro-membrane reactor for purification of water, in which filtration as well as photoelectrocatalytic oxidation of organic compounds could be carried out simultaneously, was developed. Porous $SnO_{2}$ tubes prepared by slip casting and commercial porous stainless steel tubes, being electrically conductive, were used as not only supports but also working electrodes. The UV light with the wavelength of 365 nm was applied as a light source for photocatalytic reactions. The photoelectrocatatytic composite membranes were prepared by coating the support surface with the $TiO_{2}$ sol of pH 1.45. The oxidation efficiency of formic acid increased with the reaction time and the applied voltage, but was almost independent of the solution flux. The results showed that more than 90% of formic acid could he dograded at 27V using the $TiO_{2}$/stainless steel composite membrane, while about 77% in case of the $TiO_{2}/SnO_{2}$ Composite membrane. It was also concluded that the oxidation efficiencies of formic acid could be significantly improved by about 6~7 times by the photoelectrochemical reaction in comparison with those by the photocatalytic reaction only.

  • PDF

Photoelectrochemical Studies of Nanocrystalline TiO₂Film Electrodes

  • Lee, Myoung-Soon;Cheon, Ik-Chan;Kim, Yeong-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1155-1162
    • /
    • 2003
  • Nanocrystalline semiconductor film electrodes have been prepared by sintering three different sizes of TiO₂ nanoparticle sols on conducting indium-tin-oxide (ITO) glass substrate. The electrochemical and photoelectrochemical properties of the prepared electrodes were comparatively investigated. The particle sizes, surface morphologies and crystallinities of the films were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Cyclic voltammetry and capacitance measurements in the dark implies the formation of depletion layer in the semiconductor films which was usually neglected in the previous studies and shows that flat band potential ($E_{fb}$

Investigation of Photoelectrochemical Water Splitting for Mn-Doped In2O3 Film

  • Sun, Xianke;Fu, Xinhe;You, Tingting;Zhang, Qiannan;Xu, Liuyang;Zhou, Xiaodong;Yuan, Honglei;Liu, Kuili
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.733-738
    • /
    • 2018
  • Undoped and Mn-doped $In_2O_3$ films were prepared by radiofrequency magnetron sputtering technique. The effects of Mn doping on the structural and optical properties of as-prepared films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. Mn doping can enhance the intensity of (222) peak in Mn-doped $In_2O_3$ thin film, indicating Mn dopant promotes preferred orientation of crystal growth along (222) plane. XPS analyses revealed that the doped Mn ions exist at + 2 oxidation states, substituting for the $In^{3+}$ sites in the $In_2O_3$ lattice. UV-Vis measurements show that the optical band gap $E_g$ decreases from 3.33 to 2.87 eV with Mn doping in $In_2O_3$, implying an increasing sp-d exchange interaction in the film. Our work demonstrates a practical means to manipulate the band gap energy of $In_2O_3$ thin film via Mn impurity doping, and significantly improves the photoelectrochemical activity.

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.