DOI QR코드

DOI QR Code

Cupric oxide thin film as an efficient photocathode for photoelectrochemical water reduction

  • Park, Jong-Hyun (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2022.04.12
  • Accepted : 2022.04.25
  • Published : 2022.04.30

Abstract

Preparing various types of thin films of oxide semiconductors is a promising approach to fabricate efficient photoanodes and photocathodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility of an efficient photocathode for PEC water reduction of a p-type oxide semiconductor cupric oxide (CuO) thin film prepared via a facile method combined with sputtering Cu metallic film on fluorine-doped thin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Cu metallic film in dry air. Characterization of the structural, optical, and PEC properties of the CuO thin film prepared at various Cu sputtering powers reveals that we can obtain an optimum CuO thin film as an efficient PEC photocathode at a Cu sputtering power of 60 W. The photocurrent density and the optimal photocurrent conversion efficiency for the optimum CuO thin film photocathode are found to be -0.3 mA/cm2 and 0.09% at 0.35 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for sunlight-driven hydrogen generation using a facile method.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B04030425).

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar utilization, Proc. Natl. Acad. Sci. USA, 103 (2006) 15729-15735. https://doi.org/10.1073/pnas.0603395103
  2. P.V. Kamat, Meeting the clean energy demand: Nanostructure architecture for sloar energy conversion, J. Phys. Chem. C, 111 (2007) 2834-2860. https://doi.org/10.1021/jp066952u
  3. Y, Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction, Sci. Rep., 6 (2016) 30158. https://doi.org/10.1038/srep30158
  4. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253-278. https://doi.org/10.1039/B800489G
  5. F. E. Osterloch, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev., 42 (2013) 2294-2320. https://doi.org/10.1039/C2CS35266D
  6. X. Chen, S. Chen, L. Guo, S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
  7. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting, Nano Res., 8 (2015) 2891-2900. https://doi.org/10.1007/s12274-015-0794-y
  8. R. Krol, M. Gratzel, Photoelectrochemical hydrogen production, R. Krol, M. Gratzel, Eds., Springer, Boston, MA, USA (2012).
  9. M.G. Walter et al., Solar water splitting cells, Chem. Rev., 110 (2010), 6446-6473. https://doi.org/10.1021/cr1002326
  10. J. H. Park, H. Kim, Photoelectrochemical properties of a vertically aligned zinc oxide nanorod photoelectrode, J. Kor. Inst. Surf. Eng., 51 (2018) 237-242. https://doi.org/10.5695/JKISE.2018.51.4.237
  11. S. Kim, H. Kim, Cu2O thin film photoelectrode embedded with CuO nanorods for photoelectrochemical water oxidation, J. Kor. Inst. Surf. Eng., 52 (2019) 258-264. https://doi.org/10.5695/jkise.2019.52.5.258
  12. H. Bae, V. Burungale, W. Na, H. Rho, S.H. Kang, S. W. Ryu, J. S. Ha, Nanostructured CuO with a thin g-C3N4 layer as a highly efficient photocathode for solar water splitting, RSC Adv., 11 (2021) 16083-16089. https://doi.org/10.1039/D1RA02193A
  13. D.S . Murali, S. Kumar, R. J. Choudhary, A. D. Wadikar, M. K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: Optical and electrical properties, AIP Adv., 5 (2015) 047143. https://doi.org/10.1063/1.4919323
  14. N. L. Hung, H. Kim, D. Kim, Zinc oxide wire-like thin films as nitrogen monoxide gas sensor, Korean J. Mater. Res., 25 (2015) 358-363. https://doi.org/10.3740/MRSK.2015.25.7.358
  15. H. F. Goldstein, D. S. Kim, P. Y. Yu, L. C. Bourne, J. P. Chaminade, L. Nganga, Raman study of CuO single crystal, Phys. Rev., B 41 (1990) 7192-7194. https://doi.org/10.1103/PhysRevB.41.7192
  16. P. Sinsermsuksakui, J. Heo, W. Noh, A. S. Hock, R. G. Gordon, Atomic layer deposition of tin monosulfide thin films, Adv. Energy Mater., 1 (2011) 1116-1125. https://doi.org/10.1002/aenm.201100330
  17. G. Ma, T. Hisatomi, K. Domen, From molecules to materials: Pathways to artificial photosynthesis, E.A. Rozhkova, K.Ariga, Eds., Springer, Cham., Switzerland (2015) 16.
  18. D. T. Sawyer, A. Sobkowiak, J. L. Roberts, Electrochemistry for chemists, Wiley, 2nd Ed., John Wiley & Sons, N. Y., USA (1995) 196.
  19. Z. Kang, Y. S. Gu, X. Q. Yan, Z. M. Bai, Y. C. Liu, S. Liu, X. H. Zhang, Z. Zhang, X. J. Zhang, Y. Zhang, Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application, Biosens. Bioelectron., 64 (2015) 499-504. https://doi.org/10.1016/j.bios.2014.09.055