• 제목/요약/키워드: Photoelectric device

검색결과 63건 처리시간 0.02초

Interfacial Energetics of All Oxide Transparent Photodiodes

  • Yadav, Pankaj;Kim, Hong-sik;Patel, Malkeshkumar;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.390.1-390.1
    • /
    • 2016
  • The present work explains the interfacial energetics of all oxide transparent photodiodes. The optical, structural and morphological of copper oxides were systematically analyse by UV-Visible spectrometer, X-Ray diffraction, Raman spectroscopy, Scanning electron microscopy (SEM) and Atomic force microscopy measurements (AFM). The UV-Visible result exhibits optical bandgap of Cu2O and CuO as 2.2 and 2.05 eV respectively. SEM and AFM result shows a uniform grain size distribution in Cu2O and CuO thin films with the average grain size of 45 and 40 nm respectively. The results of Current-Voltage and Kelvin probe force microscope characteristics describe the electrical responses of the Cu2O/ZnO and CuO/ZnO heterojunctions photodiodes. The obtained electrical response depicts the approximately same knee voltages with a measurable difference in the absolute value of net terminal current. More over the present study realizes the all oxide transparent photodiode with zero bias photocurrent. The presented results lay the template for fabricating and analysing the self-bias all oxide transparent photodetector.

  • PDF

MoS2 두께 변화에 따른 MoS2/p-Si 광센서 특성 연구 (MoS2 Thickness-Modulated MoS2/p-Si Photodetector)

  • 김홍식;김준동
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.145-149
    • /
    • 2017
  • Transition metal dichalcogenides (TMDs) have attracted much attention because of their excellent optical and electrical properties, which are the applications of next generation photoelectric devices. In this study, $MoS_2$, which is a representative material of TMDs, was formed by magnetic sputtering method and surface changes and optical characteristics were changed with thickness variation. In addition, by implementing the photodetector of $MoS_2/p-Si$ structure, it was confirmed that the change of the electrical properties rather than the change of the optical properties according to the thickness change of $MoS_2$ affects the photoresponse ratio of the photodetector. This result can be used to fabricate effective photoelectric devices using $MoS_2$.

MoOx 기반 실리콘 이종접합 고성능 광검출기 (MoOx/Si Heterojunction for High-Performing Photodetector)

  • 박왕희;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.720-724
    • /
    • 2016
  • Transparent n-type metal-oxide semiconductor of $MoO_x$ was applied on a p-type Si substrate for high-performing heterojunction photodetector. The formation of $MoO_x$ on Si spontaneously established a rectifying current flow with a high rectification ratio of 1,252.3%. Under light illumination condition, n-type $MoO_x$/p-type Si heterojunction device provided significantly fast responses (rise time : 61.28 ms, fall time : 66.26 ms). This transparent metal-oxide layer ($MoO_x$) would provide a functional route for various photoelectric devices, including photodetectors and solar cells.

Hybrid Transparent Conductor by using Solution-Processed AgNWs for High-Performing Si Photodetectors

  • Kim, Hong-Sik;Kim, Joondong
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.116-120
    • /
    • 2015
  • A hybrid transparent conducting layer was applied for Si photodetector. To realize the hybrid transparent conducting layer, a 200 nm-thick ITO layer was deposited onto a Si substrate, following by a solution-processed AgNWs-coating on the ITO. The hybrid transparent conducting layer showed an excellent low electric resistance of $15.9{\Box}/{\Omega}$ with a high optical transparency of 86.89%. Due to these optical and electrical benefits, the hybrid transparent conductor-embedding Si diode provides an extremely high rectifying ratio of 3386. Under light-illumination, the hybrid transparent conductor device provides extremely high photoresponses for broad wavelengths. This implies that a functional design for hybrid transparent conductor is crucial for photoelectric devices and applications.

MoS2 기반의 쇼트키 반도체 광전소자 (MoS2-Embedded Schottky Photoelectric Devices)

  • 반동균;박왕희;정복만;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.417-422
    • /
    • 2017
  • A high-performing photoelectric device was realized for the $MoS_2$-embedded Si device. $MoS_2$-coating was performed by an available large-scale sputtering method. The $MoS_2$-layer coating on the p-Si spontaneously provides the rectifying current flow with a significant rectifying ratio of 617. Moreover, the highly optical transmittance of the $MoS_2$-layer provides over 80% transmittance for broad wavelengths. The $MoS_2$-embedded Si photodetector shows the sensitive photo-response for middle and long-wavelength photons due to the functional $MoS_2$-layer, which resolves the conventional limit of Si for long wavelength detection. The functional design of $MoS_2$-layer would provide a promising route for enhanced photoelectric devices, including photovoltaic cells and photodetectors.

온도차 감지 제상법과의 비교를 통한 광센서 제상법의 타당성 검증을 위한 연구 (Feasibility of the Defrost Control by Photoelectric Technology via Comparison with the Temperature Differential Defrosting Method)

  • 전창덕;김동선
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.434-440
    • /
    • 2014
  • Experiments were performed to verify if performance and characteristic curves obtained from the temperature differential defrosting method, where surface temperature is measured to judge defrosting condition, can be reproduced by the photoelectric technology where defrosting condition is judged by photoelectric sensors. The output voltage of a phototransistor and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger are compared. The results showed that the photoelectric sensors can be used as a defrost control device. On-off control timings in temperature differential defrosting method are in good agreement with those predicted by the high and low threshold output voltages of the photoelectric sensor.

Enhanced Infrared detection of photodetector using Ag nanowire-embedded ITO Layers

  • 김홍식;김준동;;김자연;권민기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.244.1-244.1
    • /
    • 2015
  • The Ag Nanowire is one of the materials that are widely studied as alternatives to ITO and is available for large area, low cost process and the flexible transparent electrode. However, Ag nanowire can have the problem of a lack of stability at high temperatures, making this impossible to form a film. Using a structure of ITO/AgNW/ITO in photodetector device, we improved the properties of the ITO in the IR region and improved the thermal stability of the AgNW. The structure of ITO/AgNW/ITO has a high transmittance value of 89% at a wavelength of 900 nm and provide a good electrical property. The AgNWs embedded ITO film has a high transmittance, this is because of the light scattering from the AgNW. The thermal stability of the developed ITO/AgNWs/ITO films were investigated and found AgNWs embedded ITO films posses considerable high stability compared to the solo AgNWs on the Si surface. The ITO/AgNWs/ITO device showed a improved photo-response ratio compared to those of the conventional TC device in IR region. This is attributed to the high transmittance and low sheet resistance. We suggest an effective design scheme for IR-sensitive photodetection by using an AgNW embedded ITO.

  • PDF

MoO3 기반 실리콘 이종접합 IR 영역 광검출기 개발 (MoO3/p-Si Heterojunction for Infrared Photodetector)

  • 박왕희;김준동;최인혁
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.525-529
    • /
    • 2017
  • Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.

광전소자를 이용한 선박용 안개 경보 장치 구현 (Implementation of the Marine Fog Alarm Equipment using Photoelectric Element)

  • 김갑기
    • 해양환경안전학회지
    • /
    • 제17권3호
    • /
    • pp.265-268
    • /
    • 2011
  • 본 논문에서는 해상 안개를 감지하여 선박 운항 시 선원들이 안전 운항을 할 수 있도록 알려주는 안개 경보 장치를 설계 및 제작하였다. 개발된 안개 경보 장치는 광전소자인 적외선 LED의 발광부와 수광부를 이용하여 센서부와 송수신 장치 모듈을 통합시켰으며, 수신 감도만을 이용하여 저전력 및 소형화하였다. 제작된 장치의 실험은 시정 1km 이내로 안개발생 기준을 습도 70 %로 하고 인공의 안개를 발생시켜 기준값을 초과하면 알람이 울리는 것을 실험에서 확인하였다. 개발된 장치를 선박에 적용할 경우, 짙은 안개에 따른 안전사고에 신속히 대응 할 수 있을 것이다.

Metal-Oxide-Semiconductor 광전소자 (Metal-Oxide-Semiconductor Photoelectric Devices)

  • 강길모;윤주형;박윤창;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.