Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.8.525

MoO3/p-Si Heterojunction for Infrared Photodetector  

Park, Wang-Hee (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University)
Kim, Joondong (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University)
Choi, In-Hyuk (KEPCO Research Institute, Korea Electric Power Corporation)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.8, 2017 , pp. 525-529 More about this Journal
Abstract
Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.
Keywords
$MoO_3$; p-type silicon; Photoresponse; IR; Photodetector;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. M. Shieh, Y. F. Lai, W. X. Ni, H. C. Kuo, C. Y. Fang, J. Y. Huang, and C. L. Pan, Appl. Phys. Lett., 90, 051105 (2007). [DOI: https://doi.org/10.1063/1.2450653]   DOI
2 H. S. Bae, M. H. Yoon, J. H. Kim, and S. Im, Appl. Phys. Lett., 83, 5313 (2003). [DOI: http://dx.doi.org/10.1063/1.1633676]   DOI
3 E. Chen and S. Y. Chou, Appl. Phys. Lett., 70, 753 (1997). [DOI: http://doi.org/10.1063/1.118270]   DOI
4 O. M. Nayfeh, S. Rao, A. Smith, J. Therrien, and M. H. Nayfeh, IEEE Photonics Technol. Lett., 16, 1927 (2004). [DOI: https://doi.org/10.1109/LPT.2004.831271]   DOI
5 J. M. Choi and S. Im, Appl. Surf. Sci., 244, 435 (2005). [DOI: https://doi.org/10.1016/j.apsusc.2004.09.152]   DOI
6 M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, Opt. Commun., 281, 3739 (2008). [DOI: https://doi.org/10.1016/j.optcom.2008.03.036]   DOI
7 D. Mutschau, K. Holzner, and E. Obermeier, Sens. Actuators, B, 36, 320 (1996). [DOI: https://doi.org/10.1016/S0925-4005(97)80089-5]   DOI
8 J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, Energy Procedia, 77, 446 (2015). [DOI: https://doi.org/10.1016/j.egypro.2015.07.063]   DOI
9 C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, and W. Xie, ACS Appl. Mater. Interfaces, 7, 25981 (2015). [DOI: https://doi.org/10.1021/acsami.5b09492]   DOI
10 J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, Adv. Mater., 15, 1835 (2003). [DOI: https://doi.org/10.1002/adma. 200305528]   DOI
11 W. H. Park, D. K. Ban, H. Kim, H. S. Kim, M. Patel, J. H. Yoo, and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 445 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.7.445]
12 W. H. Park and J. D. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 720 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.11.720]
13 W. S. Choi, Trans. Electr. Electron. Mater., 12, 267 (2011). [DOI: https://doi.org/10.4313/TEEM.2011.12.4.267]   DOI