Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.7.417

MoS2-Embedded Schottky Photoelectric Devices  

Ban, Dong-Kyun (Department of Electrical Engineering, Incheon National University)
Park, Wang-Hee (Department of Electrical Engineering, Incheon National University)
Jong, Bok-Mahn (Department of Electrical Engineering, Incheon National University)
Kim, Joondong (Department of Electrical Engineering, Incheon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.7, 2017 , pp. 417-422 More about this Journal
Abstract
A high-performing photoelectric device was realized for the $MoS_2$-embedded Si device. $MoS_2$-coating was performed by an available large-scale sputtering method. The $MoS_2$-layer coating on the p-Si spontaneously provides the rectifying current flow with a significant rectifying ratio of 617. Moreover, the highly optical transmittance of the $MoS_2$-layer provides over 80% transmittance for broad wavelengths. The $MoS_2$-embedded Si photodetector shows the sensitive photo-response for middle and long-wavelength photons due to the functional $MoS_2$-layer, which resolves the conventional limit of Si for long wavelength detection. The functional design of $MoS_2$-layer would provide a promising route for enhanced photoelectric devices, including photovoltaic cells and photodetectors.
Keywords
$MoS_2$; p-Si; ITO; Photoelectric device;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol, 7, 497 (2013). [DOI: https://doi.org/10.1038/nnano.2013.100]
2 D. Kufer and G. Konstantatos, Nano Lett., 15, 7307 (2015). [DOI: https://doi.org/10.1021/acs.nanolett.5b02559]   DOI
3 Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep., 3, 1866 (2013). [DOI: https://doi.org/10.1038/srep01866]   DOI
4 G. R. Bhimanapati, Z. Lin, V. Meunier, Y. W. Jung, J. Cha, S. Das, D. Xiao, Y. W. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, ACS Nano, 9, 11509 (2015). [DOI: https://doi.org/10.1021/acsnano.5b05556]   DOI
5 J. H. Ryu, G. W. Baek, S. J. Yu, S. G. Seo, and S. H. Jin, IEEE Electron Device Lett., 38, 67 (2017). [DOI: https://doi.org/10.1109/LED.2016.2633479]   DOI
6 S. J. Jeong, S. M. Kim, Y. M. Kang, H. S. Lee, and D. H. Kim, Korean J. Mater. Res., 26, 422 (2016). [DOI : https://doi.org/10.3740/MRSK.2016.26.8.422]   DOI
7 L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, Nano Res., 8, 281 (2015). [DOI: https://doi.org/10.1007/s12274-014-0673-y]   DOI
8 H. S. Kim, M. Patel, H. H. Park, A. Ray, C. Jeong, and J. Kim, ACS Appl. Mater. Interfaces, 8, 8662 (2016). [DOI : https://doi.org/10.1021/acsami.5b12732]   DOI
9 K. M. Kang, J. H. Yun, Y. C. Park, and J. D. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 276 (2014). [DOI: http://dx.doi.org/10.4313/JKEM.2014.27.5.276]
10 M. D. Kumar, K. K. Kim, and J. D. Kim, Sens. Actuators, A, 223 (2015).
11 L. Yang, K. Majumdar, H. Liu, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, Nano Lett., 14, 6275 (2014). [DOI: https://doi.org/10.1021/nl502603d]   DOI
12 L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, Angew. Chem., Int. Ed., 53, 7860 (2014). [DOI: https://doi.org/10.1002/anie.201402315]   DOI
13 M. Patel, H. S. Kim, and J. D. Kim, Adv. Electron. Mater., 1, 1500232 (2015). [DOI: https://doi.org/10.1002/aelm.201500232]   DOI
14 E. L. Warren, S. W. Boettcher, J. R. McKone and N. S. Lewis, Proc. SPIE Int. Soc. Opt. Eng. (California, USA, 2010) p. 77701.