• Title/Summary/Keyword: Phosphate adsorption

Search Result 174, Processing Time 0.022 seconds

Adsorption Characteristics of Cadmium ions from Aqueous Solution using by-product of Brewing (주정오니를 활용한 수중의 카드뮴(Cd) 흡착 특성)

  • Kim, Min-Su;Ham, Kwang-Joon;Ok, Yong-Sik;Gang, Seon-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Biosorption is considered to be an alternative method to replace the present adsorbent systems for the treatment of metal contaminated wastewater. In this study, by-product which was abandoned from brewing factory was used to remove metal component in aqueous solution. The experimental results showed that the range of the removal efficiency is 60~91% and adsorption equilibrium was reached in about 3 hr. FT-IR and stereo microscope has been used to observe the surface conditions and changes in functional groups by calcination. At the end of elution, the amount of nitrogen and phosphorus in water was increased 11 and 7 times compare raw sample to calcinated samples. The Langmuir isotherm adequately described the adsorption of waste materials and the maximum adsorption capacity was 28.17 mg/g for Cd. The overall results suggested that waste material might can be used for biosorption of Cd.

Comparisons of Regeneration Methods Using Physical and Chemical Treatment for Phosphate Removal Restoration of Filter Media (여재의 인 제거기능 회복을 위한 물리화학적 재사용 방안 비교)

  • Kim, Ji Ah;Choi, I Song;Oh, Jong Min;Kim, Won Jae;Park, Jae Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.201-206
    • /
    • 2016
  • The purpose of this study is to find the regeneration method of filter media using physical and chemical treatment for restoration of phosphorus adsorption ability. The filtration material used in this study is called Adphos. In an experiment of heating treatment, re-used filter media is heated to a high temperature before the adsorption test. The results show that the $PO{_4}^{3-}-P$ adsorption capacity is in the range of 0.0021 - 0.0030 mg/g and the removal efficiency is in the range of 26.1 - 39.4%. In the experiment of acid or basic treatment, re-used filter media is exposed to a different pH condition before the adsorption test. The results show that the $PO_4^{3-}-P$ adsorption capacity is in the range of 0.0010 - 0.0066 mg/g and the removal efficiency is in the range of 15.8 - 87.1% after the acid treatments which have pH values of 1 - 5. However, after the basic treatments which have pH values of 8 - 11, the results show that the $PO{_4}^{3-}-P$ adsorption capacity is in the range of 0.0018 - 0.0034 mg/g and the removal efficiency is in the range of 26.7 - 48.0%. In an experiment of chemical treatment using NaCl, re-used filter media was exposed to a different NaCl concentration before the adsorption test. The results show that the $PO{_4}^{3-}-P$ adsorption capacity is in the range of 0.0036 - 0.0050 mg/g and the removal efficiency is in the range of 50.5 - 71.1%. In conclusion, chemical treatment using NaCl shows a high recovery probability of phosphorus adsorption ability of filter media.

Development and Application of Biocompatible Polymers(II) ―Biocompatibility of Chitosan Graft Copolymer with Phosphoryl Choline groups― (생체적합성 고분자의 개발과 응용(II) ―Phosphoryl choline기를 가진 키토산 그래프트공중합체의 생체적합성―)

  • Lee, Mi Kyung;Park, Heung Sup;Kim, Eun Young;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 1995
  • To improve the blood compatibility of chitosan membranes, 2-(methacryloyloxy)-ethyl-2-(trimethylammonium)ethyl phosphate(MTP), which is a methacrylate with phospholipid polar groups, was grafted on the surface of chitosan membranes and the biocompatibility of MTP-grafted chitosan membranes was investigated. The permeation coefficient gradually decreased with increasing in molecular weights of biocomponents below 10$^{4}$, and drastically decreased above 10$^{4}$. This result corresponds with the permeability of solutes in case of hemodialysis membranes. The MTP-grafted chitosan membranes displayed less blood cell adhesion than the chitosan membranes. This may due to the formation of biomembrane4ike surface by adsorption and arrangement of phospholipid molecules from serum onto the MTP copolymer surface.

  • PDF

Metal Ion Selectivity of Surface Templated Resins Carrying Phosphate Groups

  • Murata, Masaharu;Maeda, Mizuo;Takagi, Makoto
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.529-534
    • /
    • 1995
  • The metal ion selective resins were prepared by surface template polymerization using monooleyl phosphoric acid (1), oleyl methyl phosphoric acid (2) or oleyl ethyl phosphoric acid (3) as an amphiphilic host surfactant. The $Cu^{2+}$-imprinted resins prepared in the presence of $Cu^{2+}$ adsorbed $Cu^{2+}$ much more effectively than did their reference resins. On the other hand, the $Cu^{2+}$-imprinted resins showed much less binding ability to $Zn^{2+}$. The template-dependent selectivity should be ascribed to a favorable placement of the surface-anchored metallophilic groups for multidentate coordination to specific metal ion.

  • PDF

Effect of Polymer Shielding on Elution of G3PDH Bound to Dye-ligand Adsorbent

  • Ling Tau Chuan;Lyddiatt Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.84-87
    • /
    • 2006
  • Batch binding experiments were performed to assess the recovery performance of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) bound to the unshielded and polymer (polyvinyl pyrrolidone. PVP)-shielded dye-ligand (Cibacron Blue 3GA) adsorbent. The adoption of a polymer-shielded, dye-ligand technique facilitated the elution efficiency of bound G3PDH. It was demonstrated that the recovery of G3PDH using polymer-shielded dye-ligand adsorption yielded higher elution efficiency, at 60.5% and a specific activity of 42.3 IU/mg, after a low ionic strength elution (0.15 M NaCl). The unshielded dye-ligand yielded lower elution efficiency. at 6.5% and a specific activity of 10.2 IU/mg.

Purification and Comparison of NADH-Cytochrome $b_5$ Reductase from Mitochondrial Outer Membrane of Bovine Heart and Turnip

  • 이재양;김영호;이상직
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.160-164
    • /
    • 1998
  • The NADH-cytochrome b5 reductase (NCBR), a mitochondrial external electron carrier, was purified from bovine heart and turnip and their properties were examined. The mitochondrial outer membranes separated were subjected to NCBR isolation through DEAE-Cellulose ion exchange, DEAE-Sephadex gel chromatography, and hydroxyapatite adsorption chromatography. These processes yielded the purification folds of 88 and 42 and the recovery percentages of 0.2%, 5.67% for turnip and bovine heart, respectively. The molecular weight of the NCBR from the two sources was estimated to be 35,000 using SDS polyacrylamide gel electrophoresis. The Michaelis constant Km and maximum velocity Vmax were determined by measuring the NADH-ferricyanide redox system as well as the NADPH-ferricyanide redox system. The kinetics showed that both NCBRs had higher affinities for NADH than artificial electron-acceptor substrate ferricyanide. Although NADPH had a lower affinity for the enzymes than NADH, this study showed the 2'-phosphate dinucleotide could be used as a substrate.

Preparation of Polyethersulfone Ultrafiltration Membranes Containing $ZrO_2$ Nanoparticles by Combining Phase-inversion Method/Sol-gel Technique (상변환/졸-겔법에 의한 $ZrO_2$ 나노입자 함유 Polyethersulfone 한외여과 막의 제조)

  • Youm, Kyung-Ho;Lee, Yun-Jae
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.303-312
    • /
    • 2006
  • The asymmetric hybrid membranes of polyethersulfone (PES) and $ZrO_2$ nanoparticles were prepared via new one-step procedure combining simultaneously the phase-inversion method and the sol-gel technique. The optimum contents of $Zr(PrO)_4\;and\;HNO_3$ catalyst were determined by the adsorption experiments of phosphate anion onto the resulting hybrid membranes. The maximum adsorption of phosphate anion is obtained at the conditions of 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES and 30 mL $HNO_3$ addition per 1 mL $Zr(PrO)_4$. Variation of morphology, performance and incorporated $ZrO_2$ amount of the resulting hybrid membranes were discussed and determined using SEM, pure water flux, TGA, ICP, XRD and contact angle measurements. Increasing $Zr(PrO)_4$ addition into casting solution, pure water flux is increased and $ZrO_2$ amount in the hybrid membrane is maximized at the conditions 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES. The prephosphatation of PES-$ZrO_2$ hybrid membrane was studied to modify the surface characteristics of membrane. Ultrafiltration of bovine serum albumin (BSA) solution was performed in a dead-end cell using both a bare (non-phosphated) and a phosphated hybrid membrane. It is revealed that both the permeate flux and BSA rejection were increased as about 40% by prephosphatation of hybrid membrane. These results may be explained on the basis of the increase of membrane hydrophilicity, which was determined from contact angle measurements.

Sorption of Arsenate by the Calcined Mg-Al Layered Double Hydroxide (소성된 Mg-Al Layered Double Hydroxide에 의한 비소(V)의 흡착)

  • Seo, Young-Jin;Kang, Yun-Ju;Choi, Jung;Kim, Jun-Hyeong;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.369-373
    • /
    • 2008
  • Special concern has been given to the elevated arsenic content in soils because of its high mobility and toxicity. Layered double hydroxide (LDH) which has a high anionic exchange capacity is another potential anion adsorbent for toxic anions such as arsenic, chromate and selenium etc. The uptake of arsenate from aqueous solutions by the calcined Mg-Al LDH has been investigated. The sorption capacity was about 530 mmol/kg. Sorption isotherm was defined as L-type in which arsenate was removed by LDH through anion uptake reaction. Arsenate sorption by the calcined Mg-Al LDH was occurred by reconstruction of LDH's framework. Competitive adsorption revealed that Mg-Al LDH had higher selectivity for arsenate than for sulfate. These results strongly suggest that calcined Mg-Al LDH has a promising potential for efficient removal of toxic metal oxides like arsenates from aqueous environments.

A Study on the Optimum Conditions for Preparation of Calcium hydrogenphosphate Dihydrate by Box-Wilson Experimental Design (Box-Wilson 실험계획에 의한 연마용 인산일수소칼슘의 최적 제조조건 추구 및 안정화)

  • Rhee, Gye-Ju;Kwak, Son-Hyuk;Suh, Sung-Su
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.221-232
    • /
    • 1996
  • An abrasive, calcium hydrogen phosphate dihydrate (DCPD), was synthesized in a Box-wilson experimental design by reactions between phosphoric acid and milk of lime, and calcium chloride and sodium phosphate solutions, and stabilized with TSPP and TMP. The optimum conditions for preparation of DCPD from phosphoric acid with milk of lime were such as; reaction temp.; $51.9^{\circ}C$, conc. of lime; 25.9%, conc. of phosphoric acd; 77.9%, drying temp.; $60.2^{\circ}C$ and final pH; 6.46. The physico-chemical and pharmaceutical properties of DCPD were showed as follows: glycerin absorption value(68 ml/100g), whiteness(99.5%), particle size(10.9 nm), pH(7.8), and set test(pass). XRD and SEM of DCPD indicated a monoclinic system crystallographically. $N_2$ adsorption isotherm curve by BET showed non porous type II form. The micromeritic parameters of DCPD showed that surface area was $3.27{\sim}4.6\;cm^{2}/g$ and pore volume, pore area and pore radius were negligible. The rheogram of the toothpaste containing DCPD showed pseudoplastic flow with yield value of 321, and thixotropic behavior forming hysteresis loop. These results meet the requirements as abrasive standard, and sythesized DCPD is expected as a good dental abrasive such as a high quality grade in practice.

  • PDF

Method for contaminant removal from leachate induced by buried livestock carcasses (매몰 사축에 의한 침출수내 오염물질 제거 방법)

  • Haeseong Jeon;Joonkyu Park;Geonha Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.395-408
    • /
    • 2023
  • This study presents a novel method for addressing the issue of high-concentration contaminants (ammonium, phosphate, antibiotics) in leachate arising from decomposing livestock carcasses. Antibiotics, developed to eliminate microorganisms, often have low biodegradability and can persist in the ecosystem. This research proposes design elements to prevent contamination spread from carcass burial sites. The adsorbents used were low-grade charcoal (an industrial by-product), Alum-based Adsorbent (ABA), and Zeolite, a natural substance. These effectively removed the main leachate contaminants: low-grade charcoal for antibiotics (initial concentration 1.05 mg/L, removal rate 73.4%), ABA for phosphate (initial concentration 2.53 mg/L, removal rate 99.9%), and zeolite for ammonium (initial concentration 38.92 mg/L, removal rate 100.0%). The optimal mix ratio for purifying leachate is 1:1:10 of low-grade charcoal, ABA, and zeolite. The average adsorbent usage per burial site was 1,800 kg, costing KRW 2,000,000 per ton. The cost for the minimum leachate volume (about 12.4 m3) per site is KRW 2,880,000, and for the maximum volume (about 19.7 m3) is KRW 4,620,000. These findings contribute to resolving issues related to livestock carcass burial sites and suggest post-management strategies by advocating for the effective use of adsorbents in leachate purification.