• 제목/요약/키워드: Phase-Change Cooling

검색결과 204건 처리시간 0.026초

Development of a Flat-Plate Cooling Device for Electronic Packaging

  • Moon, Seok-Hwan;Hwang, Gunn;Lim, Hyun-Taeck
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.645-647
    • /
    • 2011
  • In this study, a microcapillary pumped loop (MCPL) that can be used as a cooling device for small electronic and telecommunications equipment has been developed. For thin devices such as an MCPL, securing a vapor flow space is a critical issue for enhancing the thermal performance. In this letter, such enhancement in thermal performance was accomplished by eliminating condensed droplets from the vapor line. By fabricating the grooves in the vapor line to eliminate droplets, a decrease in thermal resistance of about 63.7% was achieved.

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구 (A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect)

  • 변도영;김만영;백승욱
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.69-76
    • /
    • 2003
  • 액체로켓 연소기 내의 막냉각 특성 분석을 위한 비회체 분무연소에 대한 수치해석을 수행하였다. 막냉각 연료의 특성에 따른 연소기 벽면의 온도변화를 살펴보기 위하여 막냉각용 연료의 유랑, 막냉각용 액적의 직경, 그리고 공기/연료 혼합비를 매개변수로 한 수치해석을 수행하여 연소기 벽면의 온도는 막냉각용 연료 액적 직경의 변화에는 큰 영향을 받지 않지만 막냉각용 연료 유량 및 공기/연료 혼합비에 영향을 받고 있음을 확인하였다. 또한, 추진기관 벽면으로 전달되는 전도 및 복사열유속을 고찰함으로서 이러한 액체 추진기관의 연소특성을 이해하기 위해서는 열복사 및 물성치의 적절한 고찰이 필요함을 지적하였다.

고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향 (Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제17권5호
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.

상변화물질을 적용한 건축자재의 에너지절약 가능성 분석 (The Analysis of the Energy Saving Performances of Building Materials using Phase Change Materials)

  • 안상민;황석호;김태연;이승복
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.162-167
    • /
    • 2011
  • Thermal storage plays an important role in building energy saving, which is greatly assisted by the incorporation of latent heat storage in building materials. A phase change material is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, can be storing and releasing large amount of energy. Heat is stored or released when the material changes from solid to liquid. Integration of building materials incorporating PCMs into the building envelope can result in increased efficiency of the built environment. The aim of this research is to identify thermal performance of PCMs impregnated building materials which is applied to interior of building such as gypsum and red clay. In order to analyze thermal performance of phase change materials, test-cell experiments and simulation analysis were carried out. The results show that micro-encapsulated PCM has an effect to maintain a constant indoor temperature using latent heat through the test-cell experiments. PCM wallboard makes it possible to reduce the fluctuation of room temperature and heating and cooling load by using EnergyPlus simulation program. Phase change material can store solar energy directly in buildings. Increasing the heat capacity of a building is capable of improving human comfort by decreasing the frequency of indoor air temperature swings so that the interior air temperature is closer to the desired temperature for a long period of time.

  • PDF

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권1호
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.

미립잠열재를 이용한 축열 특성에 관한 실험적 연구 (Experimental Study on the Microencapsulated PCM as a Thermal Storage Medium)

  • 이효진;이재구
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.80-87
    • /
    • 2001
  • Microencapsulated PCM particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane(C$_14H_30, T_m=5.5^{\circ}C$) is capsulated in the core with the melamine of its surface. The size of particles is well-controlled under 10${\mu}{\textrm}{m}$ in the way of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentrations of slurries are prepared for 20wt%, 30wt%, and 40wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose tank whose flow rates are varied by 125cc/min, 250cc/min, and 500cc/min. However, MicroPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MicroPCM particles control its heat transfer in terms of natural convection and conducting to them.

  • PDF

포접화합물의 열물성에 미치는 첨가제의 효과(I) -TMA 물계 포접화합물에 Ethanol을 첨가한 경우- (The Effects of Additives on the Thermal Properties of a Clathrate Compound(I) -The Case of Ethanol-)

  • 김진흥;정낙규;김석현;김창오;강승현
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.258-264
    • /
    • 2004
  • The ice thermal storage system is to use consolation latent heat of water. But, supercooling phenomenon of water during phase change is to increase the cooling capacity and to decrease COP of the refrigerator. Furthermore, this causes the operation cost of system to increase and the efficiency of energy to decrease. Therefore, the better thermal storage material than the water is required. The purpose of this study is to improve supercooling characteristics and thermal properties of TMA 30wt% clathrate by using Ethanol.

가스분무법으로 제조한 MPP 분말코어의 자기적 특성에 미치는 열처리 효과 (The Effects of Heat-treatment on Magnetic Properties for Gas-atomized MPP Dust Cores)

  • 노태환;김구현;김광윤;정인범;최광보
    • 한국자기학회지
    • /
    • 제11권4호
    • /
    • pp.173-178
    • /
    • 2001
  • 가스분무법으로 만든 MPP 압분자심을 무자장 및 자장중에서 열처리한 후 냉각속도를 달리할 때 얻어지는 자기적 특성의 변화를 조사하였다. 무자장중에서 열처리시 냉각속도가 증가하면 교류투자율 및 자심손실이 감소하였으며, 이는 각각 빠른 냉각속도에서의 불균일한 내부음력의 발생과 이상 와전류손실의 감소에 기인하는 것으로 해석되었다. 한편 MPP 압분체를 무자장 열처리 후 냉각속도를 달리하여도 Ni-Fe 합금에서 전형적으로 나타나는 규칙상의 형성에 따른 자기적 특성의 변화는 보이지 않았으나, 느린 냉각속도의 조건하에서 자장열처리를 하면 용이하게 구성원자의 방향성 규칙화에 의해 유도자기이방성이 생성되며 상당한 투자율 및 자심손실의 변화가 얻어지는 것으로 관찰되었다.

  • PDF

$Na_4P_2O_7{\cdot}10H_2O$의 축열방열시 열전달 특성에 관한 실험적 연구 (An experimental study of heat transfer with $Na_4P_2O_7{\cdot}10H_2O$ as P.C.M.)

  • 이채문;임장순
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.70-77
    • /
    • 1989
  • Sodium pyrophosphate that melting point is $79-80^{\circ}C$ have been Studied on heat storage and heat discharge. In heat storage process, sodium pyrophosphate was kept up initial temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ which melt by heated water at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$. In heat discharge process, initial temperature of sodium pyrophosphate was maintained at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$ which varied cooling temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$. The experiment has been reached conclusions as follows. 1) Heat transfer properties of phase change material is controlled by conduction during heating and cooling process. 2) The temperature increased rapidly at initial stage and transient region increase slowly because of characteristic of latent heat. 3) The lower cooling water temperature is the less the time that get to thermal equivalent state take during discharge process. 4) The higher cooling water temperature is the less temperature difference between top and bottom in P.C.M during discharge process.

  • PDF