• Title/Summary/Keyword: Phase Image

Search Result 1,422, Processing Time 0.035 seconds

Key Phase Mask Updating Scheme with Spatial Light Modulator for Secure Double Random Phase Encryption

  • Kwon, Seok-Chul;Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • Double random phase encryption (DRPE) is one of the well-known optical encryption techniques, and many techniques with DRPE have been developed for information security. However, most of these techniques may not solve the fundamental security problem caused by using fixed phase masks for DRPE. Therefore, in this paper, we propose a key phase mask updating scheme for DRPE to improve its security, where a spatial light modulator (SLM) is used to implement key phase mask updating. In the proposed scheme, updated key data are obtained by using previous image data and the first phase mask used in encryption. The SLM with the updated key is used as the second phase mask for encryption. We provide a detailed description of the method of encryption and decryption for a DRPE system using the proposed key updating scheme, and simulation results are also shown to verify that the proposed key updating scheme can enhance the security of the original DRPE.

Extra-phase Image Generation for Its Potential Use in Dose Evaluation for a Broad Range of Respiratory Motion

  • Lee, Hyun Su;Choi, Chansoo;Kim, Chan Hyeong;Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Kim, Seonghoon;Choi, Sang Hyoun;Lee, Soon Sung;Kim, Jina;Hwang, JinHo;Kang, Youngnam
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.103-109
    • /
    • 2019
  • Background: Four-dimensional computed tomographic (4DCT) images are increasingly used in clinic with the growing need to account for the respiratory motion of the patient during radiation treatment. One of the reason s that makes the dose evaluation using 4DCT inaccurate is a change of the patient respiration during the treatment session, i.e., intrafractional uncertainty. Especially, when the amplitude of the patient respiration is greater than the respiration range during the 4DCT acquisition, such an organ motion from the larger respiration is difficult to be represented with the 4DCT. In this paper, the method to generate images expecting the organ motion from a respiration with extended amplitude was proposed and examined. Materials and Methods: We propose a method to generate extra-phase images from a given set of the 4DCT images using deformable image registration (DIR) and linear extrapolation. Deformation vector fields (DVF) are calculated from the given set of images, then extrapolated according to respiratory surrogate. The extra-phase images are generated by applying the extrapolated DVFs to the existing 4DCT images. The proposed method was tested with the 4DCT of a physical 4D phantom. Results and Discussion: The tumor position in the generated extra-phase image was in a good agreement with that in the gold-standard image which is separately acquired, using the same 4DCT machine, with a larger range of respiration. It was also found that we can generate the best quality extra-phase image by using the maximum inhalation phase (T0) and maximum exhalation phase (T50) images for extrapolation. Conclusion: In the present study, a method to construct extra-phase images that represent expanded respiratory motion of the patient has been proposed and tested. The movement of organs from a larger respiration amplitude can be predicted by the proposed method. We believe the method may be utilized for realistic simulation of radiation therapy.

FPGA Implementation of CORDIC-based Phase Calculator for Depth Image Extraction (Depth Image 추출용 CORDIC 기반 위상 연산기의 FPGA 구현)

  • Koo, Jung-youn;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.279-282
    • /
    • 2012
  • In this paper, a hardware architecture of phase calculator for 3D image processing is proposed. The designed phase calculator, which adopts a pipelined architecture to improve throughput, performs arctangent operation using vectoring mode of CORDIC algorithm. Fixed-point MATLAB modeling and simulations are carried out to determine the optimized bit-widths and number of iteration. Phase calculator designed in Verilog HDL is verified by emulating the restoration of virtual 3D data using MATLAB/Simulink and FPGA-in-the-loop verification.

  • PDF

All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU

  • Shan, Rongyang;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4467-4486
    • /
    • 2016
  • Discrete cosine transform (DCT) based JPEG standard significantly improves the coding efficiency of image compression, but it is unacceptable event in serious blocking artifacts at low bit rate and low efficiency of high-definition image. In the light of all phase digital filtering theory, this paper proposes a novel transform based on discrete sine transform (DST), which is called all phase discrete sine biorthogonal transform (APDSBT). Applying APDSBT to JPEG scheme, the blocking artifacts are reduced significantly. The reconstructed image of APDSBT-JPEG is better than that of DCT-JPEG in terms of objective quality and subjective effect. For improving the efficiency of JPEG coding, the structure of JPEG is analyzed. We analyze key factors in design and evaluation of JPEG compression on the massive parallel graphics processing units (GPUs) using the compute unified device architecture (CUDA) programming model. Experimental results show that the maximum speedup ratio of parallel algorithm of APDSBT-JPEG can reach more than 100 times with a very low version GPU. Some new parallel strategies are illustrated in this paper for improving the performance of parallel algorithm. With the optimal strategy, the efficiency can be improved over 10%.

Efficient Translational Motion Compensation for Micro-Doppler Extraction of Ballistic Missiles

  • Jung, Joo-Ho;Kim, Si-Ho;Choi, In-O;Kim, Kyung-Tae;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.129-137
    • /
    • 2017
  • When the micro-Doppler (MD) image of a ballistic missile is derived, the translational motion compensation (TMC) method is usually applied to the inverse synthetic aperture radar (ISAR) image, but yields poor results because of the micro-motion of the ballistic missile. This paper proposes an efficient TMC method to obtain a focused MD image of a ballistic missile engaged in complicated micro-motion. During range alignment, range profiles (RPs) are coarsely aligned by using the 1D entropy cost function of RPs as a mark, then the coarsely-aligned RPs are fine-aligned by using the minimum 2D entropy of the MD image. During phase adjustment, the gradient of the phase error is appropriately weighted and added to the previous phase error to further fine-tune the aligned RPs. In simulations using the point scatterer model and the measured data from the real missile model, the proposed method provided better image focus than the existing method.

The Enhancement of Inner-solid Image by the Bandwidth Increment of Vertically Spatial Frequency (축 방향 공간주파수 대역의 확장을 통한 고체 내부영상 개선)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hyun;Jun, Kye-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.176-180
    • /
    • 2001
  • In this paper, we have studies the images have been reconstructed by using combination of images which has been acquired by the variation of operating frequency. When inner images has been reconstructed, inner image has been superposition by surface state effect. In this case, image enhancement the phase object and enhance the contrast of inner image. In the result of the specimen for the round defect with 2mm diameter, for the types of the depth are 1.5mm, 2mm, 2.5mm, and 3mm, it has been show that the shape of defect has better than before this processing and phase contrast grow large twice. And we have constructed the acoustic microscope by using quadrature detector that is able simultaneously to acquired the amplitude and phase of the reflected signal. Father more we have studied the reconstruction method of the amplitude and phase images and the enhancement method of the defect images' contrast.

  • PDF

PPD: A Robust Low-computation Local Descriptor for Mobile Image Retrieval

  • Liu, Congxin;Yang, Jie;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.305-323
    • /
    • 2010
  • This paper proposes an efficient and yet powerful local descriptor called phase-space partition based descriptor (PPD). This descriptor is designed for the mobile image matching and retrieval. PPD, which is inspired from SIFT, also encodes the salient aspects of the image gradient in the neighborhood around an interest point. However, without employing SIFT's smoothed gradient orientation histogram, we apply the region based gradient statistics in phase space to the construction of a feature representation, which allows to reduce much computation requirements. The feature matching experiments demonstrate that PPD achieves favorable performance close to that of SIFT and faster building and matching. We also present results showing that the use of PPD descriptors in a mobile image retrieval application results in a comparable performance to SIFT.

Study on Digital Holography with Conjugated Hologram (복소공액 홀로그램을 이용한 디지털 홀로그래피 연구)

  • Shin, Sang-Hoon;Kim, Doo-Cheol;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.146-150
    • /
    • 2010
  • In this paper we have applied phase conjugated holographyto DHM (digital holography microscopy) to remove phase aberration and noise. Generally,digital holographyincludes the phase information of the object, phase aberration terms introduced by the measurement system and noise terms (DC term and twin images). These aberrations and noise terms decrease the quality of the reconstructed phase image. We could obtain a conjugated hologram which includes only phase information of object. Experimentally we show that distortion of image and aberration of phase in a measurement system are removed using the conjugation hologram.

Image Encryption and Decryption Using SA Algorithm and Optical Correlator System (SA 알고리듬과 광 상관 시스템을 이용한 영상 암호화 및 복호화)

  • 김철수;조창섭
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.349-356
    • /
    • 2004
  • In this paper, a practical image security system using SA algorithm and 4-f optical correlator system is proposed. The encrypted image and key image with binary phase components are generated using an iterative SA algorithm. a decrypted image is found through the correlation of the encrypted and key images using 4-f optical correlator system. The encrypted and key images are consisted of binary phase components. So, it is easy to implement the optical security system using the proposed technique. And if we fix the encrypted image in the optical security system and change the key images, we get different images, so it is possible to apply to the distinguished authorization system using different key images. Computer simulations show that despite the binary phase components of the two images(encrypted and key image), decrypted images are generated.

  • PDF

Optical Encryption System Using Two Linear Polarizer and Phase Mask (두 선형 편광기와 위상 마스크를 사용한 광 암호화 시스템)

  • 배효욱;신창목;서동환;박세준;조웅호;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, we propose an optical encryption system based on the encryption of information using the phase component of a wavefront and orthogonal polarization in a Mach-Zehnder interferometer. Since the incoherence of the two perpendicularly polarized lights removes interference component, the decrypted image is stable. In encryption process, the original image is converted into an image having random polarization state by the relative phase difference of horizontal polarization and vertical polarization, so we cannot obtain the original information from the random polarization distribution. To decrypt an Image, the random polarization distribution of encrypted image is divided into two orthogonal components, then key image must be placed on vertical path of Mach-Zehnder interferometer. The decrypted image is obtained In the form of intensity by use of an analyzer.