Browse > Article
http://dx.doi.org/10.3807/KJOP.2010.21.4.146

Study on Digital Holography with Conjugated Hologram  

Shin, Sang-Hoon (AP & Tec)
Kim, Doo-Cheol (Department of Physics, Cheju National University)
Yu, Young-Hun (Department of Physics, Cheju National University)
Publication Information
Korean Journal of Optics and Photonics / v.21, no.4, 2010 , pp. 146-150 More about this Journal
Abstract
In this paper we have applied phase conjugated holographyto DHM (digital holography microscopy) to remove phase aberration and noise. Generally,digital holographyincludes the phase information of the object, phase aberration terms introduced by the measurement system and noise terms (DC term and twin images). These aberrations and noise terms decrease the quality of the reconstructed phase image. We could obtain a conjugated hologram which includes only phase information of object. Experimentally we show that distortion of image and aberration of phase in a measurement system are removed using the conjugation hologram.
Keywords
Holography; Digital holography; Image reconstruction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A11, 2011-2015 (1994).
2 C. Wagneer, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999).   DOI
3 Y. Takaki and H. Ohzu, “Fast numerical reconstruction technique for high resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204-2055 (1999).   DOI
4 L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219 (1999).   DOI
5 T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).   DOI
6 E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).   DOI
7 T. Colomb, J. Kuhn, F. Charriere, and C. Depeursinge, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Exp. 14, 4300-4304 (2006).   DOI
8 J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).   DOI
9 M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of hologram with a computer,” Sov. Phys. Tech. 17, 434-444 (1972).
10 G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, “Investigation of micro-opto-electro-mechanical components with a holographic microscopic interferometer,” Proc. SPIE 3396, 238-243 (1998).   DOI
11 L. Xu, X. Peng, J. Miao, and K. Asundi, “Studies of digital microscopic with application to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).   DOI
12 S. Kim, H. Lee, and J. Son, “Recording of larger object by using two confocal lenses in digital holography,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 14, 244-248 (2003).   DOI
13 H. Cho, W. Jang, J. Shon, D. Kim, S. Shin, and Y. Yu, “Twin-image elimination in an in-line digital holographic microscope,” J. Korean Phys. Soc. 52, 1031-1035 (2008).   DOI
14 H. Cho, J. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Technology 41, 741-745 (2009)   DOI
15 H. Cho, D. Kim, Y. Yu, W. Jung, and S. Shin, “3-dimensional measurement using digital holographic microscope and phase unwrapping,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 17, 329-334 (2006).   DOI