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Abstract 
 

This paper proposes an efficient and yet powerful local descriptor called phase-space partition 
based descriptor (PPD). This descriptor is designed for the mobile image matching and 
retrieval. PPD, which is inspired from SIFT, also encodes the salient aspects of the image 
gradient in the neighborhood around an interest point. However, without employing SIFT’s 
smoothed gradient orientation histogram, we apply the region based gradient statistics in phase 
space to the construction of a feature representation, which allows to reduce much 
computation requirements. The feature matching experiments demonstrate that PPD achieves 
favorable performance close to that of SIFT and faster building and matching. We also present 
results showing that the use of PPD descriptors in a mobile image retrieval application results 
in a comparable performance to SIFT.  
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1. Introduction 

Recently, local invariant features have shown promise for image retrieval tasks [1][2][3][4] 
because they can be computed efficiently, robust to partial occlusion, and relatively insensitive 
to changes in viewpoint. The rough steps of image retrieval using local invariant features 
contains: first, extracting interest points (keypoints) and corresponding local neighbor regions 
around them for all of the images in the image lib. Typically, interest points are located at local 
peaks in scale-space [5][6][7], and filtered to preserve only those points that are likely to 
remain stable over various transformations. The local neighbor regions are generally elliptic 
regions whose size depend on the characteristic scale of the interest points; Second, certain 
features are extracted from these local neighbor regions and then form vectors called  
descriptors. Ideally, descriptor should be distinctive (reliably discriminating one interest point 
from others), robust to noise, partial occlusion, detection displacements and invariant to 
geometric and photometric deformations. Third, all the descriptors are clustered to acquire a 
great number of cluster centers (also vectors); Fourth, all of the images in the lib are encoded 
using these cluster centers to obtain respective content metric. When a query image is obtained, 
the above processing steps other than clustering are re-executed to get its content metric. 
Comparing the content metric against all of the metrics in the image lib, we could find the 
most similar image to the query image in the lib. 

How to effectively build mobile image retrieval is the major concern of this paper. In 
practice, the rough process for mobile image retrieval is shown as follows. The interest point 
detection and local image region description are first accomplished on mobile terminals and 
then the resulting feature vectors are sent to remote data processing centers via communication 
network where the image retrieval task is carried out. After comparison and ranking, a few 
candidate images are sent back to the original mobile phones for further operations. 
Considering the low computation capability of mobile terminals, the computation efficiency 
on the mobile phone becomes a bottleneck for enhancing the overall performance of the 
system. Thus, developing both a detector and descriptor which are fast to compute without 
much performance loss is of great significance for an efficient mobile image retrieval system.  
In this paper, we focus on the descriptor and try to find an efficient feature representation. Our 
primary motivation is to lessen the computation cost and to achieve a low memory usage for 
mobile phones.  

In this paper, we propose a phase-space based local image descriptor (PPD). The original 
idea of using phase space, in which all possible states of a system are represented, comes from 
physics. In a phase space, every degree of freedom or parameter of the system is represented as 
an axis of a multidimensional space. If an image surface is regarded as a system and its pixel 
location (x,y) is considered as vector variable, then the triples (pixel intensity, horizontal 
gradient, and vertical gradient) can represent the state of an image at each sample position. 
Due to brightness changes, intensity value cannot serve as a state component in the context of 
image matching. Therefore we construct a reduced phase space for describing local image 
patterns. Each region in phase space corresponds to an entry of the histogram in our algorithm. 
In comparison with the state-of-the-art descriptor SIFT [6], PPD is more efficient since it 
neither computes gradient orientation nor applies any interpolation to the feature 
representation while yet preserving considerable distinctiveness. The following experiments 
demonstrate the promise of PPD in online applications. 

The remainder of this paper is organized as follows: In Section 2, we review the previous 
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work in interest point description. In  Section 3, the details of PPD are presented. In Section 4, 
we provide detailed experiment results comparing PPD with SIFT and SURF on feature 
matching experiments and also in the context of a mobile image retrieval application, Section 
5 concludes the paper. 

2. Related Work 
Many different descriptors have been proposed to describe the appearance of a local image 
region. Popular descriptors include differential invariants [8], steerable filters [9], complex 
filters [10], moment invariants [11], spin image [12], SIFT (Scale-Invariant Feature 
Transform) [6], Shape Context [13]. The detailed performance evaluations of these descriptors 
were presented in [14][15], where it was shown that the high-dimensional representations 
based on histograms of localized gradient orientations such as SIFT outperform other 
descriptors by a certain margin in matching images of both planar surfaces and 3D objects [16]. 
Various refinements have been proposed in the literature to improve on the gradient 
orientation based descriptors. For example, Ke and Sukthankar developed the PCA-SIFT [17] 
which represents the surface of an image patch by the principal components of the normalized 
gradient patch. The computation burden of this PCA-SIFT is comparable to SIFT since the 
process of forming the normalized gradient patch also involves many interpolation operations, 
which is somewhat similar to SIFT’s 3D interpolation in terms of computation consumption. 
In addition, applying PCA also slows down the feature computation. GLOH (Gradient 
Location Orientation Histogram) [14] modifies the SIFT representation by using alternative 
spatial sampling strategy and PCA for dimensionality  reduction. 128-dimensional GLOH was 
proved to be more distinctive than SIFT but it requires more computation cost.  

To improve the computation efficiency in dense computation, Tola et al. introduced an 
alternative spatial weighting scheme (Gaussian kernel function) and replaced the smoothed 
weighted histogram used by SIFT with sum of convolutions [18]. Jie Chen et al. presented a 
robust and efficient dense descriptor based on differential excitation and gradient orientation 
[19], which obtains a favorable performance in texture classification and face detection. In 
order to retrieve leaf image effectively, Yoon-Sik Tak and Eenjun Hwang introduced a new 
shape representation, indexing, and matching scheme [20].  

To compute more quickly for sparse feature points, Bay et al. provided an efficient 
implementation of SIFT by applying the integral image for the computation of image 
derivatives [21]. However, its implementation process is computationally a bit complicated 
and the distinctive character of the descriptor can be further enhanced. Another two low-cost 
descriptors have also been reported in the literature [22][23]. CS-LBP (simplified 
center-symmetric local binary patterns) [22] and Contrast Context Histogram [23] both 
exploited the contrast of pixel value  to reduce computation cost. The former needs to set a 
contrast threshold in the case of flat regions, which increases its sensitivity to the parameter. 
The latter lacks the description of the correlation between adjacent pixels in its feature 
representation. Due to the out-performance of SIFT representation in common deformation, 
this paper also focuses on this algorithm and explores the simplified alternatives to it. 

3. The PPD Descriptor 
In this section, we briefly describe the SIFT, then introduce PPD and discuss the difference 
between them. Finally we demonstrate the greater computation efficiency on PPD 
representation as compared with SIFT. 



308                                            Liu et al.: PPD: A Robust Low-computation Local Descriptor for Mobile Image Retrieval 

3.1 Review of the SIFT Algorithm 
The SIFT descriptor is a 3D smoothed histogram in which two dimensions are image gradient 
locations, and the additional dimension is the image gradient orientation. The location, over a 
local image patch, is quantized into 4×4 location grids. The gradient orientation, in each 
single grid, is quantized into 8 orientations. For each grid, an orientation based histogram is 
created. All these orientation histograms over all 4×4 grids are concatenated to form the SIFT 
descriptor, which is a 128-dimensional description vector. The histogram based on gradient 
orientation  contributes much to SIFT in distinctiveness and robustness due to  its insensitivity 
to initial misregistration error. 

The smoothed properties of  SIFT are mainly attributed to the following two reasons. First, 
a Gaussian window is overlaid over the local image region to assign a weight to the gradient 
magnitude of each sample point. The purpose of this weighting function is to avoid sudden 
changes in the descriptor due to small misalignment error of keypoint (interest point) and 
to reduce the influences of gradient magnitudes which are far from the keypoint. Second, a 
trilinear interpolation is used to distribute the gradient magnitude of each sample point into 
adjacent 4×2 (4×2 denotes 4 nearest location grids to the sample point and 2 adjacent 
orientations of the gradient sample respectively) histogram bins, the main purpose of the 
interpolation is to weaken boundary affect in which the descriptor abruptly changes as a 
sample shifts smoothly from one grid to another or from one orientation to another [6]. As a 
result, each bin in the histogram is composed of weighting summation of magnitudes of image 
gradients around its grid center.  

Furthermore, to cancel the effect of affine illumination change and non-linear illumination 
change, the descriptor  is normalized to a unit vector in which each value is limited to no more 
than 0.2, and then re-normalized to a unit vector. All the above characteristics result in the 
remarkable out-performance of SIFT. 

3.2 The PPD Descriptor 
In this section, we discuss PPD representation in detail. It is assumed that the keypoints and 
corresponding local neighbor regions have been extracted from an image and the local 
neighbor regions have been transformed into normalized forms. The algorithm for PPD is 
carried out on the normalized image patches (41×41 pixels [24]), and then the keypoint 
locations are located at the centers of the patches. The dominant orientation of the image patch 
is defined as the direction of the smoothed gradient over this patch, in which a Gaussian 
weighting function with the standard variance equal to half of the width of the image patch is 
used to assign a weight to the (dx,dy) of each sample point. In general, a large integration scale 
can make orientation estimation robust to the keypoint location errors. 

3.2.1 Primary PPD Representation 
The idea of PPD is based on a phase-space (the coordinates are composed of dx, dy ) partition  
over the image patch, see Fig. 1, in which a naive phase-space partition scheme is illustrated. 
From Fig. 1, it can be observed that  PPD differs from SIFT in that it constructs description 
vector based on 8 continuous regions rather than 8 discrete orientations used by SIFT. 

PPD can be summarized in the following steps: 
(1) Given an image patch, compute  both  the horizontal  and vertical gradient maps . 

The horizontal gradient, vertical gradient and corresponding image gradient magnitude are 
first computed at each sample point over the image patch. To guarantee invariance to 
orientation change, the coordinates of the descriptor are rotated relatively to the assigned 
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dominant orientation. Both the new image coordinates and the gradient maps at each sample 
point can be obtained from the old ones by a linear transformation A. 

cos( ) sin( )
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θ θ
θ θ
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= = ⎜ ⎟−⎝ ⎠
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Where θ is the dominant orientation; newx represents the new image coordinates or gradient 
maps and oldx  refers to the old corresponding ones. The gradient maps are illustrated with 
small arrows at each sample location in the middle of Fig. 1. 
 

 
Fig. 1. The difference between PPD and SIFT 

 
(2) Building the descriptor based on a specific phase-space partition scheme. 

In the new coordinate system, the input image patch is first divided into 4×4 sub-regions, and 
one specific phase-space scheme is applied to them. For example, an eight region-partition 
scheme, in which the whole phase-space is evenly divided into eight regions, is shown in Fig. 
1. According to this scheme, algorithm 1 outputs the PPD representation. 

Based on the above algorithm, we can calculate a histogram {bin1, bin2, ……, bin8} for 
each sub-region, concatenating the 4×4 histograms in the order illustrated on the left side of 
Fig. 1 to form an enhanced 128-dimensional descriptor, which is a 3D histogram. The 
histogram for the eighth sub-region can be obtained from the upper-right of Fig. 1, where the 
length of each green line segment serves as the corresponding entry of the histogram. It allows 
for both significant shift in gradient positions and deviation in gradient orientations by 
creating histograms over 4×4 sample regions and 8 phase-space regions. A gradient sample, 
shifting randomly over 3×3 set of sample locations, rotating within a certain range, makes the 
same contribution to the histogram, as can be seen in Fig. 1 and Fig. 2. PPD outperforms SIFT 
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On the left, the image patch is first divided into 4×4 sub-regions. For the PPD representation, we 
compute (dx, dy) at each pixel on the image patch. Then, according to the relation between dx and 
dy, the corresponding phase-space region can be determined for each gradient sample. On the upper 
right, an eight-partition phase-space for the 8th sub-region is illustrated and the length of green line 
segments represents the sum of gradient norm within the regions. With respect to SIFT, however, 
we must compute both the gradient norm and orientation at each pixel, as shown in the middle of the 
figure. 

PPD representation 

SIFT representation 
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about 10% performance as compared with SIFT without an interpolation in the dimension of 
orientation. Hence, PPD is more robust to distortions. 
 
Algorithm 1 – PPD construction over one image patch 
Input:  one image patch  and being divided into 4×4  sub-regions 
for    4×4  sub-regions  
 {bin1, bin2, ……, bin8}:={0, 0, 0, ……, 0} 
 for   each gradient sample point (dx,dy) on one sub-region 
 norm=sqrt(dx*dx+dy*dy)*w(x,y)  % compute the weighted gradient norm 

% w(x,y) is a Gaussian function with the  
% variance equal to half of the width of  
% the image patch. 

    if dx>0{  
   dy>dx bin1← bin1+norm 
   0<dy<dx bin2← bin2+norm 
  -dx<dy<0 bin3← bin3+norm 
  else bin4← bin4+norm 
  }  
 else{  
  dy>-dx bin5← bin5+norm 
  0<dy<-dx bin6← bin6+norm 
  dx<dy<0 bin7← bin7+norm 
  else bin8← bin8+norm 
 }  
 store {bin1, bin2, ……, bin8} 
 end   
end  

 

 
Fig. 2. The robustness of PPD for the variations of gradient directions. The image patchs are from [21] 

3.2.2 Refined PPD Representations 
Some important issues about PPD in practical applications should be further considered. 
First, how to reduce the boundary affect? The region layout scheme illustrated in Fig. 1 
usually cause significant boundary affect because some gradients close to the horizontal 
direction often commute between the region 1 and the region 8 due to the initial 
misregistration errors. This decreases the robustness of the descriptor when the horizontal 
direction has been aligned with the dominant orientation. To address the problem, a refined 
region partition scheme is proposed in Fig. 3c, in which we align the central axis of region 1 
with the horizontal direction and assume the dominant orientation is in accordance with it. As 
a result, the gradients around the dominant orientation are almost partitioned into an identical 

Image patch        SIFT                PPD64                   Image patch           SIFT                PPD64 

1v 11v

 
(a)  Clean                                                                   (b) Noisy        

Due to projective distortions or noise, a gradient sample V1 is transformed into V11. If not beyond 
the range of the region 1, V11 makes the same contribution to PPD as V1. Therefore PPD is more 
robust to the variations of gradient directions than the locally operating SIFT. 

Region 1 Region 1
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region (region 1), which tends to reduce boundary affect and increase the robustness of the 
descriptor. Our experiments have shown that a significant performance increase (around 
10-15%) occurs when the scheme is put into practice.  

 

 
Fig. 3. Refined  PPD representations 

 
Second, how to reduce memory consumption and further increase matching speed? For 

embedded devices, lower memory usage and higer computation efficiency are critical to 
practical applications, therefore finding low-dimensional description schemes is also 
necessary. Two alternative low-dimensional counterparts to the 8-region scheme are proposed 
in Figs.  3a and 3b, namely 4-region scheme and 6-region one. 

Third，some tricks may be taken for the convenience of computation. For the 4-region 
partition scheme, an offset-angle of π/4 radians is first subtracted from the dominant 
orientation and then the descriptor coordinates are rotated to align with this new dominant 
orientation. Next, we can determine the histogram entry of a gradient sample by judging the 
configurations of the signs of the gradient maps (see Fig. 1) at the given sample location. 
Algorithm 2 gives the simplified algorithm of building a PPD representation according to the 
improved 4-region partition scheme in Fig. 3a.   

 
Algorithm 2 – the simplified version of  PPD64 
Input:  one image patch   
θ=θ-π/4, Xnew =AXold 
The image patch  is then divided into 4×4  sub-regions 
for  4×4  sub-regions  
 {bin1, bin2, bin3, bin4}:={0, 0, 0, 0} 
 for   each gradient sample point (dx,dy) on one sub-region 
 norm=sqrt(dx*dx+dy*dy)*w(x,y)  
 if dx>0{                    % only judging the sign 
   dy>0         bin1← bin1+norm     
  else bin2← bin2+norm 
  }  
 else{  
  dy>0 bin3← bin3+norm 
  else bin4← bin4+norm 
 }  
 store {bin1, bin2, bin3, bin4} 
 end   
end  

 

(a) 4-region partition  (b) 6-region partition  (c) 8-region partition 
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From the algorithm 2, we can see that the simplified PPD is computationally very simple. 
The similar operations can be extended to the other two schemes.  

3.2.3 Normalization 
To cancel the effect of affine illumination change, the PPD descriptor turns into a unit vector. 
The unitization process can cancel the effect of scale factor on the descriptor. In addition, an 
identical offset added to each pixel value does not cause any change of gradient magnitude 
which is based on pixel value difference. Therefore, the unit form of PPD representation 
remains invariant under affine change in illumination. 

To reduce effect of the non-linear illumination change, we limit each value in the unit 
feature vector to be no larger than 0.35, and re-normalize it to unit length. The value of 0.35 
was determined experimentally using images containing different amount of illuminations. 
Note that it is different from the threshold 0.2 suggested in [6]. This is because the first 
histogram entry for each sub-region accumulates more gradient norms than the other entries in 
the histogram. Therefore, it is reasonable to assign a larger value.  

3.2.4 Computation Complexity  
In this section, we discuss the computation burden of PPD and SIFT. Both of the algorithms  
are carried out on the normalized image patches. SIFT needs to compute gradient (magnitude 
and orientation) at each sample location, in which the computation of gradient orientation 
involves relatively time-consuming inverse tangent computation. The algorithm for PPD 
circumvents and simplifies the problem by comparing the size of horizontal gradient and 
vertical gradient at each sample position or judging configurations of their signs to obtain the 
corresponding bins in the histogram. In our experiments, the histogram entry for a gradient 
sample can be  determined by twice or thrice comparisons, which is rather convenient to 
compute. 

Moreover, to avoid all boundary affects, SIFT carries out trilinear interpolation to smoothen 
the histogram, but PPD representation doesn’t take any interpolation, because (1) region based 
statistics is robust to the variations of gradient orientation, as can be seen in Fig. 2.  (2) a useful 
measurement is proposed to weaken boundary affect in the direction dimension as described in 
Section 3.2.2. (3) in most  cases,  the performance of PPD is close to that of SIFT, as shown in 
the experiments below.  

Concerning the overall performance in terms of both discriminance and computation 
efficiency, we decide to give up interpolation. As a result, PPD is approximately 4 times faster 
than SIFT at the cost of  sacrificing a little discriminative power in the commonly occurring 
photometric scenes. The detailed results are shown in the following experiments. 

4. Experiment Evaluation 

4.1 Data Set 
In this section, we evaluate PPD descriptor and compare it with the state-of-the-art descriptor 
SIFT on a standard dataset and a real-application dataset. The former one comes from [24], a 
popular dataset for the evaluation of local feature properties. The dataset consists of eight 
image sequences including textured-images and structured-images. There are different 
deformations among these images, like viewpoint change, scale and rotation change, light 
change, blur, and JPEG compression. The test images of the standard dataset used in the 
experiments are shown in Fig. 4. These image pairs are either planar scene or captured from 
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fixed-position camera during acquisition. Thus, the relation between them can be modeled by 
a 2D homography matrix; by the way, the image set has also provided homographies for some 
pair of images. The second dataset is captured by a scanner and several mobile phones, which 
is used in the last experiment of mobile image retrieval, as discussed in detail in Section 4.4.4. 

4.2 Interest Region Detection and Normalization 

Since solutions to localization and description are independent [14], we could choose different 
local image region detection algorithms, such as MSER [25], Harris-Affine, Hessian-Affine 
[5], EBR, IBR [26], Affine saliency [27], and DOG [6]. A detailed performance comparison 
between them has been presented in [28].  

In the case of feature matching experiment, we choose Hessian-Affine and Harris-Affine for 
that they have been widely used in descriptor evaluation [14]. Hessian-Affine could detect 
blob-like points, which are less likely at the positions of depth-difference pixel points and 
favor local planarity and smoothness assumption. 
 

(a) Graffiti(1-2) (b) Graffiti(1-3) (c) Graffiti(1-4) (d) Wall(1-5) (e) Boat(1-4) 

(f) Bark(1-4) (g) Bike(1-4) (h) Tree(1-4) (i) Leuven(1-4) (j) Ubc(1-4) 

Fig. 4.  Data set 1.  Viewpoint change for structured scene (a) 20°, (b) 30°, and (c) 40°, for textured 
scene (d)  50°; scale+rotation for structured scene (e), and for textured scene (f); blur for structured 

scene (g), and for textured scene (h); (i) light change ; (j) JPEG compression. 
 

Harris-Affine extractes corner points which possess excellent robustness under geometric 
and photometric transformations but often lie close to a depth discontinuity, thus 
Hessian-Affine regions have higher detection accuracy than Harris-Affine ones. Both detector 
output elliptic regions whose sizes depend on the characteristic scale. Before computing 
descriptors, these elliptic regions should be normalized to 41×41 image patches [24]. Note that 
the practically effective computation scope in our experiments is a circular region with the 
radius of 29 for guaranteeing orientation invariance.  
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In addition, to evaluate the performance of descriptors on scale invariant detectors, we 
select DOG (a very popular scale invariant detector, a simplified version of multi-scale LOG 
detector [7], detecting blob-like points as well) as the localization algorithm in  the experiment 
of mobile image retrieval, since severe viewpoint changes are not the main deformations in 
this image dataset. 

4.3 Evaluation Metric 
We adopt the metrics in [14][5] to evaluate the performance of PPD, which are based on the 
number of correct matches and false matches obtained for a pair of images. More specifically, 
the following three metrics are adopted: 
 

(1) Correspondence metric:         1 22 2

1 21 2

k k

k k

β
−

>
−

D D
D D

 

Where k1 represents a keypoint in one image; k21, k22 refer to two keypoints in another image; 
Dki represents the descriptor for ki, i∈ {1, 21, 22}; Dk21, Dk22 are the first and the second nearest 
neighbor to Dk1 respectively; β is the match threshold. The distance ratio, which can reflect the 
underlying distribution of descriptors in feature space, is commonly used to identify the 
correspondences most likely to be correct. 

(2) Correct match metric :    1 a b
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Where Rμ  represents the elliptic region defined by 1Tμ =x x ; A is a locally affine 

transformation of the homography between the two images; 
a b

TR Rμ μA AI  and 

a b

TR Rμ μA AU  represent the area intersection and area union respectively; ε refers to the 
overlap error.  

(3) Recall versus 1-precision:  

  

#    
#    
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=  
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of false matchprecision
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− =  

This indicator can fully reflect the discriminative power of the descriptor. The recall versus 
1-precision curve is obtained by varying the match threshold β and a perfect descriptor would 
give a recall close to 1 for any 1-precision. Note that the number of total match is determined 
by the correspondence metric and the numbers of correct match and false match need to be 
further determined by the correct match metric. 

4.4 Experiment Results 
Because the SIFT-like representations have been identified as being most resistant to common 
image deformations [14], we choose to compare PPD with SIFT and SURF [21] (another 
simplified version of SIFT with excellent performance) in the experiments. Since the 
characteristic scale is not discernible over the normalized patches [24], we use the gradient to 
replace SURF’s original Haar wavelet response and thus implement an approximate version of 
SURF on the normalized patches, which is called A-SURF64 in the following experiments. 
The bin codes of interest region detection (Harris-Affine, Hessian-Affine) can be downloaded 
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from [24]; DOG and SIFT representation [29] are re-implemented by us for the experiments. 
The octaves for DOG are limited not to be beyond 6 and the initial scale is set to 1.6 [6]. ε is set 
to 50% [14]. All the test programs are running on a LAPTOP of AMD 1.9GHz, 2GM.  

4.4.1 Scheme Selection 
In practical application of image retrieval, choosing an appropriate phase-space partition 
scheme is quite necessary. Generally, more bins can readily capture more intensity pattern and 
more spatial information in the image patch. However, due to the sensitivity to noise or the 
limitations of the proposed scheme, the performance of a descriptor is likely to degrade or 
maintain at a certain level when more bins are added. Furthermore, more bins requires more 
storage space and more matching time. We test the performances of PPD with three partition 
schemes (4-region, 6-region and 8-region) on Hessian-Affine regions using the standard 
dataset. The experiment results are shown in Figs. 5-8.  
On the whole, there is a minor difference among them in all plots. Looking closely, we can 
also observe that 4-region scheme obtains a slightly better score in the geometric 
transformation scenes as compared with the other two schemes and comparable score in the 
other scenes. This can be attributed to the following two reasons. First, the geometric 
transformation of images often results in variations of the dominant orientations and more 
feature location errors, which usually enhance boundary affect between the bins of the 
histograms. The better performance of 4-region scheme in such scenes is due to the fact that it 
can offer larger regions compared with the other two schemes and these larger regions tend to 
tolerate more orientation errors and  feature location errors. Second, lower dimensional feature 
vectors are in general less distinctive than their high-dimensional counterparts. When 
orientation estimation and feature location are sufficiently accurate, the high-dimensional 
description vectors are able to capture more structure information of image patterns. Thus, the 
outperformance of 8-region scheme is not surprising in most cases of the remaining 
non-geometric scenes. As can also be observed, however, the 8-region scheme is closely 
followed by the 4-region one and even surpassed by the latter (shown in Fig. 8b) in Ubc image 
set. This also confirms that the finer subdivisions of histogram bins appear to be less robust  
[21] provided that no other measures are taken to reduce the effect of inaccuracy introduced by 
image transformations and region detection.  

In the next experiments, we only use the 4-region PPD to compare performance with SIFT 
due to its reasonable dimension and relatively leading performance in all of the scenes.  
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Fig. 6.  Scale+rotation for structured scene (a), textured scene(b) 

Fig. 7.  Blur for structured scene (a), textured scene(b) 
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Fig. 8.  Illumination change (a), JPEG compression (b) 
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Fig. 5.  Viewpoint  for structured scene (a), textured scene(b) 
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4.4.2 Recall versus 1-precision Performance Curve  
Viewpoint changes: 
We first evaluate the PPD descriptor under viewpoint changes using the “Graffiti” set. The 
experiment is conducted  between the first image and the remaining images in the set in the 
order of gradually increasing transformations, only the results for three image pairs (shown in 
Figs. 4a, 4b, and 4c) are given due to the space limit. The viewpoint changes for them are 
approximately (a) 20° , (b) 30°, (c) 40°. In Fig. 9a, which shows the results for the image pair 
(1st, 2nd), we can observe that PPD obtains a lower score than SIFT for both Hessian-Affine 
regions and Harris-Affine regions. As the amount of viewpoint changes increases, the 
performance difference of the two algorithms also increases slightly, as shown in Figs. 9a, 9b,  
and 9c. Overall, the performance of PPD is comparably close to that of SIFT if the viewpoint 
changes are less than 40°, which commonly occurs in photometric scenes. In addition, 
A-SURF is getting increasingly closer to PPD with the severity of the transformation. This 
demonstrates that SURF representation is more robust to viewpoint change compared to PPD. 
The similar results, which are not shown for space limit either, can be obtained in the textured 
scenes (the Wall set).  
 

Scale change and rotation: 
Next, we test the performance of PPD for combined scale change and rotation. As can be 
observed from Fig. 10, there is a minor difference in performance between PPD and SIFT in 
both the Boat pair (shown in Fig. 4e) and the Bark pair (shown in Fig. 4f). As the 1-precision 
increases, PPD shows a trend to surpass SIFT; for example, when 1-precision reaches about 
0.9, PPD outperforms SIFT in the Bark pair. Also, we can observe that the performance gap 
between them decreases compared with viewpoint changes. This is because the weakening 
geometric transformation leads to more accurate local image regions and reduces the impact of 
boundary affect on the descriptors. Accordingly, the advantage of SIFT’s smoothed histogram 
is less distinct as compared with viewpoint changes. 
Images blur:  
we also evaluate our descriptor under significant image blur. Fig. 11a shows the results for the 
structured scene (shown in Fig. 4g), and Fig. 11b for the textured scene (shown in Fig. 4h). 
PPD achieves comparable performance to SIFT in both of the scenes. In the textured scene, the 
significant amount of blur makes local image regions nearly identical, therefore the two 
algorithms both obtain rather low scores. The relatively low-dimensional PPD64 is not enough 
to discriminate these local image regions distinctively. In Fig. 7b, PPD128 outperforms 
PPD64 and achieves a better score close to that of SIFT. 
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Fig. 9. Viewpoint changes for structured scene: (a) 20°, (b) 30°, and (c) 40°   
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Illumination change and JPEG compression: 
Finally, under illumination change and JPEG compression, the difference in performance 
between PPD, A-SURF and SIFT is not quite apparent,  as shown in Fig. 12a and Fig. 12b. 
Due to no significant geometric transformations in these images, the locations and shapes of 
local image regions are more accurate. Thus, all the three algorithms obtain much better scores 
in these scenes than in the other scenes. The performance differences between them are also 
reduced to the minimum level. 

To sum up, SIFT representation is superior to PPD64 in most cases, but the differences 
between them are small. We can also observe that PPD sometimes locally outperforms SIFT 
when 1-precision is small (shown in Figs. 9c, 11a, and 12b). Additionally, in most of the 
experiments, PPD64 obtains slightly better scores than A-SURF64, especially on the 
Hessian-Affine regions. This is because that the accurate regions favor our method more as 
compared with A-SURF64 (A-SURF64 is relatively more robust). Such performance 
differences, however, seem to have no significant impact on image retrieval results, which is 
verified in the last experiment.  
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Fig. 10.  Scale+rotation for structured scene (a), textured scene(b) 
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Fig. 11. Blur for structured scene (a), textured scene (b)
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4.4.3 Computation Cost Comparison 
Table 1 compares the three algorithms in terms of the running time. In our test, the local image 
region detection algorithm and description algorithm are independent, therefore, the running 
time of detection and normalization for PPD64, A-SURF, and SIFT is identical. Since we 
focus on the comparison of the time spent on building descriptor, the running time is omitted 
for the first row. The second row shows the time for the three algorithms to compute descriptor 
representation. The final row shows their matching time respectively.  
 

Table 1. Comparison of the average time consumption with PPD64, A-SURF64, and SIFT 
 PPD64 A-SURF64 SIFT 

Detection and 
normalization — — — 

Descriptor 0.4092s 0.4028s 1.6098s 
Matching 0.5336s 0.5336s 1.0198s 

 
From Table 1, we can observe that PPD64 is roughly four times faster in the descriptor 

construction and two times faster in the point pair matching than SIFT, but slightly slower than 
A-SURF64. Note that the time values in Table 1 are the average of 5 times of tests, which are 
computed from 1758 local image regions obtained with Harris-Affine detector in the first 
image of the Graffiti set. 

4.4.4 Mobile Image Retrieval 
In this experiment, we integrate PPD, A-SURF, and SIFT in a real-application mobile image 
retrieval system, and compare their performance. The detail is described below. First, 5,000 
images of different scenes have been scanned from the Magazine “Business Week” to create a 
reference image database for later retrieval. Then, 2,000 testing images are captured from the 
same scenes using different mobile phones by different people. Some testing images are 
showed in Fig. 13. As can be seen, there are significant image degradations in testing images 
mainly arising from non-linear illumination change, blur, and noise contamination. Also, 
viewpoint change, scale, and rotation change further increase the degradations. Overall these 
images can be approximately looked as planar surfaces; however, due to the disturbances 
coming from various light sources, there are apparent reflective phenomena of planar surfaces 

Fig. 12. Illumination change for (a), JPEG compression (b) 
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in testing images, as found on the “car” image in Fig. 13. 
 
Reference image database (from a scanner) 

Testing image database (from several mobile phones at different time) 

 
Fig. 13. Data set 2, example images for mobile image retrieval 

 
The image retrieval using SIFT descriptors (or A-SURF, PPD descriptors) is formulated as 

follows: 
(1) For each image in the reference image database, we detect DOG interest points. 
(2) For each interest region, we compute an SIFT descriptor (or A-SURF, PPD descriptor).  
(3) Vector quantizes all of the descriptors in the reference image database into clusters, which 

compose a visual vocabulary. 
(4) All the images in the reference image database are encoded using “TF-IDF” [2] to obtain 

respective high-dimensional content metric (a document vector). 
(5) Each image in the testing image database is used as a query into the reference database. 

The above processing steps other than (3) are re-executed for each testing image to obtain 
the content metric.   

(6) At the retrieval stage, images in the reference image database are ranked by their 
normalized scalar product (cosine of angle) between the query vector and all the document 
vectors in the reference database, and the first one is considered as the candidate image. 
Further, if the candidate image is the expected target image, the algorithm is awarded 1 
point, and the retrieval accuracy rate of the algorithm is defined as its total score divided 
by 2000. The final retrieval results are illustrated in Table 2 where the three algorithms 
demonstrate comparable performance. Note that all of the images are first pre-processed 
by the saliency detection algorithm [30] to acquire high informational regions which we 
usually focus on and lessen computation demands. 

 
Table 2. The practical results of image retrieval with PPD64, A-SURF64, and SIFT 

 PPD64 A-SURF64 SIFT 
Cluster algorithm AKM [3] AKM AKM 
Quantized Cluster centers 150,000 150,000 150,000 
Accuracy rate 94.95% 94.50% 96.20% 

 
The explanations for the retrieval results are as follows. First, the main reason of the results 

is due to the minor differences in quality of local features. In Section 4.4.2, the experiment 
results have demonstrated that the distinctiveness of local features created by the three 
algorithms is similar in the scenes of light change, blur, scale change, and rotation. Second, 
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another reason is the approximate computations in the steps of clustering and encoding which 
significantly reduce requirements in terms of discriminative power for descriptors. The 
distinctiveness of the descriptor, which is very crucial to find exact correspondences among 
images, is less important in image retrieval, whose purpose is to find the most similar image as 
a whole. Third, the saliency detection algorithm [30] used for pre-processing also contributes 
much to the high scores for the three algorithms in terms of accuracy rate. Too many 
characters in images result in excessive feature points. This heavily increases the computation 
burden and makes the cluster computation impractical. The saliency detection helps us to 
obtain high informational regions while filtering out much background noise. As a result, 85% 
of the feature points are removed and a resultant increase in performance about 20-30% 
occurs.  

In addition, the local intensively reflective phenomena of planar surfaces do not exert 
significant negative impact on the experiment results. This is because that the phenomenon 
can be regarded as a partial occlusion while local invariant features in themselves are not 
sensitive to it. Thus, the experiment results also confirm the robustness of the image retrieval 
based on local invariant features. 

5. Conclusions 
In this paper, we have presented a robust low-computation local descriptor called PPD. It gets 
inspiration from SIFT and uses the SIFT-like grid to capture the spatial information as well. 
However, instead of employing the discrete orientation based histogram, we introduce the 
regional statistics in the phase space as a feature representation, which has more robustness. 
PPD circumvents the time-consuming computation of orientation and can be implemented 
quite efficiently with a simple region partition rule. Experiment results show that PPD 
illustrates a favorable discrimination power and a significant reduction in computation 
requirements as compared to SIFT. Compared with A-SURF64, PPD obtains slightly better 
scores in most cases with comparable computation cost. In the practical mobile image retrieval 
experiment, PPD also yields comparable results in terms of the accuracy rate to 
SIFT.Genearlly, PPD offers an appropriate trade-off between performance and computation 
burden. Thus, we believe that PPD holds a great promise for such applications where low 
computation requirements are necessary. We will explore simplified alternative interpolation 
strategies to further enhance PPD in discriminance power and apply the ideas behind phase 
space partition to other description representations.  
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