• Title/Summary/Keyword: Phase Field

Search Result 3,214, Processing Time 0.036 seconds

Joint Estimation of Near-Field Source Parameters and Array Response

  • Cui, Han;Peng, Wenjuan
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.83-94
    • /
    • 2017
  • Near-field source localization algorithms are very sensitive to sensor gain/phase response errors, and so it is important to calibrate the errors. We took into consideration the uniform linear array and are proposing a blind calibration algorithm that can estimate the directions-of-arrival and range parameters of incident signals and sensor gain/phase responses jointly, without the need for any reference source. They are estimated separately by using an iterative approach, but without the need for good initial guesses. The ambiguities in the estimations of 2-D electric angles and sensor gain/phase responses are also analyzed in this paper. We show that the ambiguities can be remedied by assuming that two sensor phase responses of the array have been previously calibrated. The behavior of the proposed method is illustrated through simulation experiments. The simulation results show that the convergent rate is fast and that the convergent precision is high.

Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI (저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법)

  • Kim, Pan-Ki;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Purpose : A new inhomogeneity correction method based on two-point Dixon sequence is proposed to obtain water and fat images at 0.35T, low field magnetic resonance imaging (MRI) system. Materials and Methods : Joint phase-magnitude density function (JPMF) is obtained from the in-phase and out-of-phase images by the two-point Dixon method. The range of the water signal is adjusted from the JPMF, and 3D inhomogeneity map is obtained from the phase of corresponding water volume. The 3D inhomogeneity map is used to correct the inhomogeneity field iteratively. Results : The proposed water-fat imaging method was successfully applied to various organs. The proposed 3D inhomogeneity correction algorithm provides good performances in overall multi-slice images. Conclusion : The proposed water-fat separation method using JPMF is robust to field inhomogeneity. Three dimensional inhomogeneity map and the iterative inhomogeneity correction algorithm improve water and fat imaging substantially.

Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method (셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션)

  • Changkye Lee;Sundararajan Natarajan;Jurng-Jae Yee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.295-305
    • /
    • 2023
  • This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has recieved considerable attention in crack initiation and propagation since the method needs no further treatment to express the crack growth path. In the phase-field method, high strain-energy accuracy is needed to capture the complex crack growth path; thus, it is obtained in the framework of the smoothed finite-element method. The salient feature of the smoothed finite-element method is that the finite element cells are divided into sub-cells and each sub-cell is rebuilt as a smoothing domain where smoothed strain energy is calculated. An adaptive quadtree refinement is also employed in the present framework to avoid the computational burden. Numerical experiments are performed to investigate the performance of the proposed approach, compared with that of the finite-element method and the reference solutions.

Performance Analysis of Least-Squares Estimation and LAMBDA Method for GPS Precise Positioning using Carrier Phase (GPS 반송파 위상을 이용한 정밀 측위의 최소자승법과 LAMBDA기법의 성능분석)

  • 박헌준;원종훈;고선준;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.146-146
    • /
    • 2000
  • This paper presents field test results of the GPS precise positioning using carrier phase observable. The Least-squares AMBiguity Decorrelation Adjustment(LAMBDA) method is implemented to resolve integer ambiguity problem for two epoch Ll carrier phase measurement data. Field test results show that the GPS precise positioning of cm-level accuracy is obtainable with conventional low cost, single frequency C/A code GPS receivers.

  • PDF

Analysis on Phase and Amplitude Apodization in SIL Based Near-Field Recording Optics (SIL 응용 광 기록계에서 발생하는 위상 및 진폭 Apodization 해석)

  • Kim Wan-Chin;Choe Hyeon;Song TaeSun;Park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.14-15
    • /
    • 2005
  • In near-field recording (NFR) optics using solid immersion lens (SIL), near-field air gap induces unwanted spherical aberration, defocus and astigmatism. This phenomenon can be explained with the apodization of phase and amplitude between each linearly polarized light. In this paper, we analyzed the effect of phase and amplitude apodization with the fundamental multiple beam interference theory, and we compared resultant diffracted patterns on the image plane for the Si-disk first surface media structure and cover-layer incident media structure.

  • PDF

The Characteristics of Piezoelectric Strian Constants on PNN-PZ-PT Ceramics (PNN-PZ-PT계 세라믹스의 압전변위특성)

  • 정수태;남효덕;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.802-810
    • /
    • 1989
  • The temperature dependence of piezoelectric strain constant and the electric field induced strain are investigated as a function of PT in 0.5[xPT-(1-x)PZ]-0.5PNN ceramics. The piezoelectric strain constant d31 has the highest value(360$\times$10-12m/V) at PT=0.68. The temperature dependence of d31 is improved as Curie temperature of sample is increased, and the electric field dependence of induced strain is decreased with the coercive field increased. This ceramic system shows both piezoelectric effect and electrostrictive effect under the applied electric field. The piezoelectric of tetragonal phase is higher than that of rhombohedral phase, and the magnitude of electrostrictive constant is appeared in the order of morphotropic, rhombohedral and tetragonal phase. The piezoelectric strain constant with applied field must be considered theelectrostrictive effect due to 90$^{\circ}$domain wall displacements, and the displacement of bimorph type actuator agrees with the calulated value well.

  • PDF

Magnetic field Inhomogeneity measurement algorithm using magnetic resonance (자기 공명 영상을 이용한 불균일 자계 측정 알고리즘)

  • Kim, H.J.;Kim, C.Y.;Han, S.Y.;Yoon, J.H.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2809-2811
    • /
    • 1999
  • In this paper, we develope an algorithm to calculate field inhomogeneity in MR imaging using a dual fast spin echo pulse sequence. Because phase modulation time can be easily modified with this pulse sequence, high resolution image can be obtained and acquisition time can be reduced compared to gradient echo technique. In the case of phase wrapping in field map, phase corrected using image processing technique. We assume the field pattern to be second order polynomial and apply Pseudo-Inverse equation to calculate second order polynomial coefficients. These coefficients can be used for the shimming of the magnetic field.

  • PDF

The Effect of Crystal and Non-Crystal Structures on Shielding Material Behaviour Under A.C. Field Excitations

  • Rahman, Nazaruddin Abd;Mahadi, Wan Nor Liza
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • Shielding effects in conductive and magnetic materials were investigated as a function of properties, thickness and diameter. In this work, evaluations on passive conductive and magnetic shield specimens were achieved through experimentation set-up using 50 Hz single and three phase induction field sources. Analysis on material microstructure properties and characteristics of shielding specimens were performed with the use of vibrating sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM). An induction field at $136{\mu}T$ of single phase system and $50{\mu}T$ of three phase systems were observed to the shield specimens with the thickness ranged of 0.2 mm to 0.4 mm. It is observed that shield specimen efficiency becomes inversely proportionate to the increment of induction fields. The decrease was attributed to the surface structure texture which relates to the crystallization and non-crystallization geometrical effects.

Magnetic-Field-Model and Circuit-Model Based Analysis of Three-Phase Magnetically Coupled Resonant Wireless Power Transfer Systems with Cylinder-Shaped Coils

  • Chen, Xuling;Fu, Xiewei;Jiang, Chong;Pei, Cunhui;Liu, Fuxin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1154-1164
    • /
    • 2018
  • In single-phase magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the transfer characteristics, including the output power and transfer efficiency, are significantly influenced by the spatial scales of its coils. As a potential alternative, a three-phase MCR WPT system with cylinder-shaped coils that are excited in a voltage-fed manner has been proposed to satisfy the requirements of compact space. This system adopts a phase-shifted angle control scheme to generate a rotating magnetic field and to realize omnidirectional WPT that is immune to spatial scales. The magnetic field model and equivalent circuit models are built to holistically analyze the system characteristics under different angular misalignments. Research results show that the transfer characteristics can be improved by modulating the phase-shifted angle in each phase. Experiments have also been carried out to evaluate the accuracy of the theoretical analysis and to confirm the validity of the system modeling method.

Image Processing of Defocus Series TEM Images for Extracting Reliable Phase Information (정확한 위상정보를 얻기 위한 탈초점 영상들의 이미지 처리기법)

  • Song, Kyung;Shin, Ga-Young;Kim, Jong-Kyu;Oh, Sang-Ho
    • Applied Microscopy
    • /
    • v.41 no.3
    • /
    • pp.215-222
    • /
    • 2011
  • We discuss the experimental procedure for extracting reliable phase information from a defocus series of transmission electron microscopy (TEM) dark-field images using the transport of intensity equation (TIE). Taking InGaN/GaN multi-quantum well light-emitting diode as a model system, various factors affecting the final result of reconstructed phase such as TEM sample preparation, TEM imaging condition, image alignment, the correction of defocus values and the use of high frequency pass filter are evaluated. The obtained phase of wave function was converted to the geometric phase of the corresponding lattice planes, which was then used for the two-dimensional mapping of lattice strain following the dark-field inline holography (DIH) routine. The strain map obtained by DIH after optimized image processing is compared with that obtained by the geometric phase analysis of high resolution TEM (HRTEM) image, manifesting that DIH yields more accurate and reliable strain information than HRTEM-based GPA.