• Title/Summary/Keyword: Phase Change Heat Transfer

Search Result 261, Processing Time 0.031 seconds

An approximate analytical solution for the initial transient process of close-contact melting on an isothermal surface (등온가열에 의한 접촉융해의 초기 과도과정에 대한 근사적 해석해)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1710-1719
    • /
    • 1997
  • An approximate analytical solution for the initial transient process of close-contact melting occurring between a phase change material kept at its melting temperature and an isothermally heated flat surface is derived. The model is so developed that it can cover both rectangular and circular cross-sectional solid blocks. Normalization of simplified model equations in reference to the steady solution enables the solution to be expressed in a generalized form depending on the liquid-to-solid density ratio only. A selected result shows an excellent agreement with the previously reported numerical data, which justifies the present approach. The solution appears to be capable of describing all the fundamental characteristics of the transient process. In particular, dependence of the solid descending velocity oft the density ratio at the early stage of melting is successfully resolved. The effects of other parameters except the density ratio on the transient behaviors are efficiently represented via the steady solution implied in the normalized result. A simple approximate method for estimating the effect of convection on heat transfer across the liquid film is also proposed.

Measurement of Dynamic Contact Angle of Droplet on Moving Hydrophobic and Hydrophilic Surfaces (이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정)

  • Song, Jungyu;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • This study investigates dynamic wetting behaviors of a water droplet placed on surfaces with different wettability and nano-structures. Hydrophobic and hydrophilic properties on as-received silicon wafers were prepared by fabricating thin films of hydrophobic polymer and hydrophilic nanoparticles via layer-by-layer coating. Dynamic advancing contact angle of droplets on the prepared surfaces was measured at various moving velocities of triple contact line with a high-speed video camera. As advancing velocity of triple contact line increased, dynamic advancing contact angle on the as-received silicon and hydrophobic surfaces sharply increased up to $80^{\circ}$ in the range of order of mm/sec whereas the SiO2 nanoparticle-coated hydrophilic surface maintained low contact angles of about $30^{\circ}$ and then it gradually increased in the velocity range of order of hundred mm/sec. The improved dynamic wetting ability observed on the nanostructured hydrophilic surface can benefit the performance of various phase-change heat transfer phenomena under forced convective flow.

The influence of the water ingression and melt eruption model on the MELCOR code prediction of molten corium-concrete interaction in the APR-1400 reactor cavity

  • Amidu, Muritala A.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1508-1515
    • /
    • 2022
  • In the present study, the cavity module of the MELCOR code is used for the simulation of molten corium concrete interaction (MCCI) during the late phase of postulated large break loss of coolant (LB-LOCA) accident in the APR1400 reactor design. Using the molten corium composition data from previous MELCOR Simulation of APR1400 under LB-LOCA accident, the ex-vessel phases of the accident sequences with long-term MCCI are recalculated with stand-alone cavity package of the MELCOR code to investigate the impact of water ingression and melt eruption models which were hitherto absent in MELCOR code. Significant changes in the MCCI behaviors in terms of the heat transfer rates, amount of gases released, and maximum cavity ablation depths are observed and reported in this study. Most especially, the incorporation of these models in the new release of MELCOR code has led to the reduction of the maximum ablation depth in radial and axial directions by ~38% and ~32%, respectively. These impacts are substantial enough to change the conclusions earlier reached by researchers who had used the older versions of the MELCOR code for their studies. and it could also impact the estimated cost of the severe accident mitigation system in the APR1400 reactor.

Finite element analysis of casting processes considering molten-metal flow and solidification (용탕유동과 응고를 고려한 주조공정의 유한요소해석)

  • Yoon, Suck-Il;Kim, Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

An Analysis of the Definition and the Meaning Used for the Terms of Heat and Thermal Energy in the Science Textbooks (과학과 교과서에 나타난 열과 열에너지 용어의 정의 및 사용 의미 분석)

  • Kim, Serim;Park, Jong-Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.214-225
    • /
    • 2018
  • In this study, we tried to find out how heat and thermal energy terms are defined and used in Korean science textbooks, and to see if there are any differences in the meaning of these terms used in different areas of science. For this purpose, the contents of 52 science textbooks of elementary, middle and high school published by the 2009 revised curriculum were analyzed. The definition of the term heat is given in the middle school Science(1) and the high school Physics I and II textbooks. Most textbooks define heat as "energy transferred due to a temperature difference (Type I)". Only one textbook of Physics I defines heat as "transfer of energy due to a temperature difference (Type II)". The definition of thermal energy is mostly presented in the middle school Science (2) and the high school Physics I textbooks. Physics I textbooks define the thermal energy as "molecular kinetic energy (Type III)", while Science(2) textbooks define it as Type I or "energy causes temperature change or phase transition of matter (Type IV)". In the texts of textbooks, heat is mainly used as the meaning of Type I or Type III. Thermal energy is mainly used as Type III, but it is also used as Type I in the high school Physics and Chemistry textbooks. The meanings of heat and thermal energy terms used are differed by the area of science. They are mainly used as type I or type III in Physics and Chemistry textbooks, and used as type III in Life Science and Earth Science textbooks.

Thermal Performance of the Storage Brick Containing Microencapsulated PCM (상변화형 미세캡슐을 함유한 축열블럭의 열성능 특성)

  • Lee, D.G.;Chun, W.G.;Kang, Y.H.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 1999
  • The thermal performance of storage brick, containing microencapsulated PCM(phase change material), was investigated for utilization as a floor heating system. Sodium acetate trihydrate($CH_3COONa{\cdot}3H_2O$) was selected for the PCM and was encapsulated. The thermal storage brick was manufactured with mixing cement mortar having 10%, 20% PCM contents, respectively. Four different flow rates and three different cooling temperatures was used in this work for analyzing the heat charging and discharging characteristics of the thermal storage brick. The result showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM.

  • PDF

Numerical Study of Bubble Motion During Nucleate Boiling on a Micro-Finned Surface (마이크로 핀 표면 핵비등에서의 기포거동에 대한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1089-1095
    • /
    • 2011
  • Numerical simulation is performed for nucleate boiling on a micro-finned surface, which has been widely used to enhance heat transfer, by solving the equations governing the conservation of mass, momentum, and energy in the liquid and vapor phases. The bubble motion is determined by a sharp-interface level-set method, which is modified to include the effect of phase change and to treat the no-slip and contact-angle conditions, as well as the evaporative heat flux from the liquid microlayer on immersed solid surfaces such as micro fins and cavities. The numerical results for bubble formation, growth, and departure on a microstructured surface including fins and cavities show that the bubble behavior during nucleate boiling is significantly influenced by the fin-cavity arrangement and the fin-fin spacing.

Dynamic Modeling & Analysis of Vapor Phase Blowdown of Depressurized Vessel (기체 블로우 다운의 동적 모델링 및 분석)

  • Kim, Kyungwoon;Seo, Ji Won;Hwang, Sungwon;Lee, Yun Ju;Moon, Young Sik
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.350-359
    • /
    • 2016
  • For accurate estimation over the change of pressure and temperature of the vessel during blowdown period, a new dynamic blowdown model was developed in this work. In particular, heat transfer from the vessel wall to discharge gas at both laminar or turbulent flow in the vessel was embedded to the model to increase the accuracy of blowdown estimation. For thermodynamics, the whole blowdown period was discretized into finite pressure decrement steps, and the step size was adjusted so that the calculation can be more efficiently carried out, while maintaining the model's accuracy. Both Peng-Robinson and Soave-Redlich-Kwong equation of states were applied to the model, and the results were compared each other. Finally, the simulation results was compared with Haque and coworkers' experimental results, and it proved high accuracy of the model.

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.