• Title/Summary/Keyword: Pharmacological mechanisms

Search Result 289, Processing Time 0.021 seconds

Mitochondria: multifaceted regulators of aging

  • Son, Jyung Mean;Lee, Changhan
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.13-23
    • /
    • 2019
  • Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging.

Anti-thrombus Effects of Isoscopoletin by Regulating Cyclic Nucleotides on U46619-induced Platelets (U46619 유도의 혈소판에서 Cyclic Nucleotides 조절을 통한 Isoscopoletin의 혈전생성 억제효과)

  • Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.26-33
    • /
    • 2021
  • During blood vessel damage, an essential step in the hemostatic process is platelet activation. However, it is important to properly control platelet activation, as various cardiovascular diseases, such as stroke, atherosclerosis, and myocardial infarction, are also caused by excessive platelet activation. Found primarily in the roots of plants of the genus Artemisia or Scopolia, isoscopoletin has been studied to demonstrate its potential pharmacological effects against Alzheimer's disease and anticancer, but the mechanisms and roles involved in thrombus formation and platelet aggregation are insufficient. This study investigated the effect of isoscopoletin on U46619-induced human platelet activation. As a result, isoscopoletin significantly increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) dose-dependently. In addition, isoscopoletin significantly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphprotein (VASP), which are known substrates for cAMP-dependent kinases and cGMP-dependent kinases. Phosphorylated IP3R by isoscopoletin inhibited Ca2+ mobilization from the dense tubular system Ca2+ channels to cytosol, and phosphorylated VASP was involved in the inhibition of fibrinogen binding through αIIb/β3 inactivation in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clotting production. Therefore, this study suggests that isoscopoletin has a potent antiplatelet effect and may be helpful for platelet-related thrombotic diseases.

Undaria pinnatifida Inhibits the Mast Cell-Mediated Inflammatory Response via NF-κB/Caspase-1 Suppression

  • Jeon, Yong-Deok;Lee, Su-Hyun;Kim, Su-Jin
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.503-509
    • /
    • 2021
  • Marine sources as potential treatment options for various diseases have been a subject of growing interest. However, information on the anti-inflammatory mechanism employed by Undaria pinnatifida (UP) remains limited. The present study was conducted to investigate the mechanisms of UP on the mast cell-mediated inflammatory response. To determine the pharmacological mechanism of UP in inflammatory reaction, we evaluated the effects of UP on interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α production and nuclear factor-κB (NF-κB) and caspase-1 activation in calcium ionophore A23187 plus phorbol 12-myristate 13-acetate-stimulated human mast cells-1 (HMC-1). The results showed that UP suppressed IL-6, IL-8 and TNF-α production in a dose-dependent manner. Moreover, UP significantly attenuated NF-kB/caspase-1 activation in stimulated HMC-1. Collectively, these findings provide experimental evidence that UP may be a useful candidate for the inflammation-related diseases treatment.

Pain in amyotrophic lateral sclerosis: a narrative review

  • Kwak, Soyoung
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition characterized by loss of motor neurons, resulting in motor weakness of the limbs and/or bulbar muscles. Pain is a prevalent but neglected symptom of ALS, and it has a significant negative impact on the quality of life of patients and their caregivers. This review outlines the epidemiology, clinical characteristics, underlying mechanisms, and management strategies of pain in ALS to improve clinical practice and patient outcomes related to pain. Pain is a prevalent symptom among patients with ALS, with a variable reported prevalence. It may occur at any stage of the disease and can involve any part of the body without a specific pattern. Primary pain includes neuropathic pain and pain from spasticity or cramps, while secondary pain is mainly nociceptive, occurring with the progression of muscle weakness and atrophy, prolonged immobility causing degenerative changes in joints and connective tissue, and long-term home mechanical ventilation. Prior to treatment, the exact patterns and causes of pain must first be identified, and the treatment should be tailored to each patient. Treatment options can be classified into pharmacological treatments, including nonsteroidal anti-inflammatory drugs, antiepileptic drugs, drugs for cramps or spasticity, and opioid; and nonpharmacological treatments, including positioning, splints, joint injections, and physical therapy. The development of standardized and specific assessment tools for pain-specific to ALS is required, as are further studies on treatments to reduce pain, diminish suffering, and improve the quality of life of patients with ALS.

Systems pharmacology approaches in herbal medicine research: a brief review

  • Lee, Myunggyo;Shin, Hyejin;Park, Musun;Kim, Aeyung;Cha, Seongwon;Lee, Haeseung
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.417-428
    • /
    • 2022
  • Herbal medicine, a multi-component treatment, has been extensively practiced for treating various symptoms and diseases. However, its molecular mechanism of action on the human body is unknown, which impedes the development and application of herbal medicine. To address this, recent studies are increasingly adopting systems pharmacology, which interprets pharmacological effects of drugs from consequences of the interaction networks that drugs might have. Most conventional network-based approaches collect associations of herb-compound, compound-target, and target-disease from individual databases, respectively, and construct an integrated network of herb-compound-target-disease to study the complex mechanisms underlying herbal treatment. More recently, rapid advances in high-throughput omics technology have led numerous studies to exploring gene expression profiles induced by herbal treatments to elicit information on direct associations between herbs and genes at the genome-wide scale. In this review, we summarize key databases and computational methods utilized in systems pharmacology for studying herbal medicine. We also highlight recent studies that identify modes of action or novel indications of herbal medicine by harnessing drug-induced transcriptome data.

Korean Red Ginseng saponin fraction exerts anti-inflammatory effects by targeting the NF-κB and AP-1 pathways

  • Lee, Jeong-Oog;Yang, Yanyan;Tao, Yu;Yi, Young-Su;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.489-495
    • /
    • 2022
  • Background: Although ginsenosides and saponins in Korea red ginseng (KRG) shows various pharmacological roles, their roles in the inflammatory response are little known. This study investigated the anti-inflammatory role of ginsenosides identified from KRG saponin fraction (RGSF) and the potential mechanism in macrophages. Methods: The ginsenoside composition of RGSF was identified by high-performance liquid chromatography (HPLC) analysis. An anti-inflammatory effect of RGSF and its mechanisms were studied using nitric oxide (NO) and prostaglandin E2 (PGE2) production assays, mRNA expression analyses of inflammatory genes and cytokines, luciferase reporter gene assays of transcription factors, and Western blot analyses of inflammatory signaling pathways using the lipopolysaccharide (LPS)-treated RAW264.7 cells. Results: HPLC analysis identified the types and amounts of various panaxadiol ginsenosides in RGSF. RGSF reduced the generation of inflammatory molecules and mRNA levels of inflammatory enzymes and cytokines in LPS-treated RAW264.7 cells. Additionally, RGSF inhibited the signaling pathways of NF-κB and AP-1 by suppressing both transcriptional factors and signaling molecules in LPS-treated RAW264.7 cells. Conclusion: RGSF contains ginsenosides that have anti-inflammatory action via restraining the NF-κB and AP-1 signaling pathways in macrophages during inflammatory responses.

Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model

  • Lee, Sang-Bin;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.409-417
    • /
    • 2022
  • Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.

CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy

  • Kim, Soo Jin;Kim, Suntae;Choi, Yong June;Kim, U Ji;Kang, Keon Wook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.435-446
    • /
    • 2022
  • The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts

  • Seung-hyun Kwon;Hyunju Chung;Jung-Woo Seo;Hak Su Kim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.143-148
    • /
    • 2024
  • Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybean-derived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis.