Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.020

Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model  

Lee, Sang-Bin (Department of Integrative Biological Sciences and Industry, Sejong University)
Yang, Hyun Ok (Department of Integrative Biological Sciences and Industry, Sejong University)
Publication Information
Biomolecules & Therapeutics / v.30, no.5, 2022 , pp. 409-417 More about this Journal
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.
Keywords
Parkinson disease; Sinapic acid; Mitochondrial fission; MPTP; REB-ERB ${\alpha}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kohsaka, A., Das, P., Hashimoto, I., Nakao, T., Deguchi, Y., Gouraud, S. S., Waki, H., Muragaki, Y. and Maeda, M. (2014) The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLoS ONE 9, e112811.
2 Andrabi, S. S., Tabassum, H., Parveen, S. and Parvez, S. (2020) Ropinirole induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in Wistar rats. Neurotoxicology 77, 94-104.   DOI
3 Biorklund, G., Dadar, M., Anderson, G., Chirumbolo, S. and Maes, M. (2020) Preventive treatments to slow substantia nigra damage and Parkinson's disease progression: a critical perspective review. Pharmacol. Res. 161, 105065.
4 Cho, B., Choi, S. Y., Cho, H. M., Kim, H. J. and Sun, W. (2013) Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp. Neurobiol. 22, 149-157.   DOI
5 Ercolani, L., Ferrari, A., Mei, C. D., Parodi, C., Wade, M. and Grimaldi, B. (2015) Circadian clock: time for novel anticancer strategies? Pharmacol. Res. 100, 288-295.   DOI
6 Gong, C., Li, C., Qi, X., Song, Z., Wu, J., Hughes, M. E. and Li, X. (2015) The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by ageing in the mouse liver. Chronobiol. Int. 32, 1254-1263.   DOI
7 Hayashi, A., Matsunaga, N., Okazaki, H., Kakimoto, K., Kimura, Y., Azuma, Hiroki., Ikeda, E., Shiba, T., Yamato, M., Yamada, K., Koyanagi, S. and Ohdo, S. (2013) A disruption mechanism of the molecular clock in a MPTP mouse model of Parkinson's disease. Neuromolecular Med. 15, 238-251.   DOI
8 Bido, S., Soria, F. N., Fan, R. Z., Bezard, E. and Tieu, K. (2017) Mitochondrial division inhibitor-1 is neuroprotective in the A53T-alpha-synuclein rat model of Parkinson's disease. Sci. Rep. 7, 7495.
9 Shahmohamady, P., Eidi, A., Mortazavi, P., Panahi, N. and Minai-Tehrani, D. (2018) Effect of sinapic acid on memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pol. J. Pathol. 69, 266-277.   DOI
10 Roby, D. A., Ruiz, F., Kermath, B. A., Voorhees, J. R., Niehoff, M., Zhang, J., Morley, J. E., Musiek, E. S., Farr, S. A. and Burris, T. P. (2019) Pharmacological activation of the nuclear receptor REV-ERB reverses cognitive deficits and reduces amyloid-β burden in a mouse model of Alzheimer's disease. PLoS ONE 14, e0215004.
11 Li, H., Kim, J., Tran, H. N. K., Lee, C. H., Hur, J., Kim, M. C. and Yang, H. O. (2021b) Extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan reduces behavioral defect and enhances autophagy in experimental models of Parkinson's disease. Neuromolecular Med. 23, 428-443.   DOI
12 Zhou, J., Zhao, Y., Li, Z., Zhu, M., Wang, Z., Li, Y., Xu, T., Feng, D., Zhang, S., Tang, F. and Yao, J. (2020) miR-103a-3p regulates mitophagy in Parkinson's disease through Parkin/Ambra1 signaling. Pharmacol. Res. 160, 105197.
13 Zheng, J. L., Yuan, S. S., Wu, C. W., Lv, Z. M. and Zhu, A. Y. (2017) Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish. Aquat. Toxicol. 182, 113-119.   DOI
14 Lee, S., Youn, J., Jang, W. and Yang, H. O. (2019) Neuroprotective effect of anodal transcranial direct current stimulation on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice through modulating mitochondrial dynamics. Neurochem. Int. 129, 104491.
15 Li, X., Lin, J., Ding, X., Xuan, J., Hu, Z., Wu, D., Zhu, X., Feng, Z., Ni, W. and Wu, A. (2019) The protective effect of sinapic acid in osteoarthritis: in vitro and in vivo studies. J. Cell. Mol. Med. 23, 1940-1950.   DOI
16 Park, J., Seo, J., Won, J., Yeo, H., Ahn, Y., Kim, K., Jin, Y., Koo, B., Lim, K. S., Jeong, K., Kang, P., Lee, H., Baek, S. H., Jeon, C., Hong, J., Huh, J., Kim, Y., Park, S., Kim, S., Lee, D., Lee, S. and Lee, Y. (2019) Abnormal mitochondria in a non-human primate model of MPTP-induced Parkinson's disease: Drp1 and CDK5/p25 signaling. Exp. Neurobiol. 28, 414-424.   DOI
17 Roe, A. J. and Qi, X. (2018) Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington's disease. Biochem. Biophys. Res. Commun. 496, 706-711.   DOI
18 Yang, C., Deng, Q., Xu, J., Wang, X., Hu, C., Tang, H. and Huang, F. (2019) Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats Food Res. Int. 116, 1202-1211.   DOI
19 Suen, D. F., Norris, K. L. and Youle, R. J. (2008) Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590.   DOI
20 Welch, R. D., Billon, C., Valfort, A. C., Burris, T. P. and Flaveny, C. A. (2017) Pharmacological inhibition of REV-ERB stimulates differentiation, inhibits turnover and reduces fibrosis in dystrophic muscle. Sci. Rep. 7, 17142.
21 Zhao, F., Austria, Q., Wang, W. and Zhu, X. (2021) Mfn2 overexpression attenuates MPTP neurotoxicity in vivo. Int. J. Mol. Sci. 22, 601.
22 Stujanna, E. N., Murakoshi, N., Tajiri, K., Xu, D., Kimura, T., Qin, R., Feng, D., Yonebayashi, S., Ogura, Y., Yamagami, F., Sato, A., Nogami, A. and Aonuma, K. (2017) Rev-erb agonist improves adverse cardiac remodeling and survival in myocardial infarction through an anti-inflammatory mechanism. PLoS ONE 12, e0189330.
23 Rudenok, M. M., Alieva, A. K., Starovatykh, J. S., Nesterov, M. S., Stanishevskaya, V. A., Kolacheva, A. A., Ugryumov, M. V., Slominsky, P. A. and Shadrina, M. I. (2020) Expression analysis of genes involved in mitochondrial biogenesis in mice with MPTP-induced model of Parkinson's disease. Mol. Genet. Metab. Rep. 23, 100584.
24 Qi, X., Qvit, N., Su, Y. C. and Mochly-Rosen, D. A. (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J. Cell Sci. 126, 789-802.
25 Shirihai, O. S., Song, M. and Dorn, G. W., 2nd (2015) How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116, 1835-1849.   DOI
26 Videnovic, A. and Golombek, D. (2013) Circadian and sleep disorders in Parkinson's disease. Exp. Neurol. 243, 45-56.   DOI
27 Wang, Y., Lv, D., Liu, W., Li, S., Chen, J., Shen, Y., Wang, F., Hu, L. and Liu, C. (2018) Disruption of the circadian clock alters antioxidative defence via the SIRT1-BMAL1 pathway in 6-OHDA-induced models of Parkinson's disease. Oxid. Med. Cell. Longev. 2018, 4854732.
28 Woldt, E., Sebti, Y., Solt, L. A., Duhem, C., Lancel, S., Eeckhoutem J., Hesselink, M. K. C., Paquet, C., Delhaye, S., Shin, Y., Kamenecka, T. M., Schaart, G., Lefebvre, P., Neviere, R., Burris, T. P., Schrauwen, P., Staels, B. and Duez, H. (2013) Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039-1046.   DOI
29 Carter, S. J., Durrington, H. J., Gibbs, J. E., Blaikley, J., Loudon, A. S., Ray, D. W. and Sabroe, I. (2016) A matter of time: study of circadian clocks and their role in inflammation. J. Leukoc. Biol. 99, 549-560.   DOI
30 Belaid, H., Adrien, J., Karachi, C., Hirsch, E. C. and Francois, C. (2015) Effect of melatonin on sleep disorders in a monkey model of Parkinson's disease. Sleep Med. 16, 1245-1251.   DOI
31 Goede, P., Wefers, J., Brombacher, E. C., Schrauwen, P. and Kalsbeek, A. (2018) Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol. 60, R115-R130.   DOI
32 Kim, J., Jang, S., Choi, M., Chung, S., Choe, Y., Choe, H. K., Son, G. H., Rhee, K. and Kim, K. (2018) Abrogation of the circadian nuclear receptor REV-ERBalpha exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration. Mol. Cells 41, 742-752.
33 Xie, Y., Tang, Q., Chen, G., Xie, M., Yu, S., Zhao, J. and Chen, L. (2019) New insights into the circadian rhythm and its related diseases. Front. Physiol. 10, 682.
34 Yoon, B. H., Jung, J. W., Lee, J., Cho, Y., Jang, C., Jin, C., Oh, T. H. and Ryu, J. H. (2007) Anxiolytic-like effects of sinapic acid in mice. Life Sci. 81, 234-240.   DOI
35 Zare, K., Eidi, A., Roghani, M. and Rohani, A. H. (2015) The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab. Brain Dis. 30, 205-213.   DOI
36 Laloux, C., Derambure, P., Houdayer, E., Jacquesson, J., Bordet, R., Destee, A. and Monaca, C. (2008) Effect of dopaminergic substances on sleep/wakefulness in saline- and MPTP-treated mice. J. Sleep Res. 17, 101-110.   DOI
37 Lee, H. E., Kim, D. H., Park, S. J., Kim, J. M., Lee, Y. W., Jung, J. M., Lee, C. H., Hong, J. G., Liu, X., Cai, M., Park, K. J., Jang, D. S. and Ryu, J. H. (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid beta(1-42) protein-induced Alzheimer's disease. Pharmacol. Biochem. Behav. 103, 260-266.   DOI
38 Li, H., Feng, Y., Chen, Z., Jiang, X., Zhou, Z., Yuan, J., Li, F., Zhang, Y., Huang, X., Fan, S., Wu, X. and Huang, C. (2021a) Pepper component 7-ethoxy-4-methylcoumarin, a novel dopamine D2 receptor agonist, ameliorates experimental Parkinson's disease in mice and Caenorhabditis elegans. Pharmacol. Res. 163, 105220.
39 Kim, D. H., Yoon, B. H., Jung, W. Y., Kim, J. M., Park, S. J., Park, D. H., Huh, Y., Park, C., Cheong, J. H., Lee, K., Shin, C. Y. and Ryu, J. H. (2010) Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology 59, 20-30.   DOI
40 Lauretti, E., Meco, A. D., Merali, S. and Pratico, D. (2017) Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson's disease. Mol. Psychiatry 22, 280-286.   DOI
41 Mishra, A., Singh, S., Tiwari, V., Bano, S. and Shukla, S. (2020) Dopamine D1 receptor agonism induces dynamin related protein-1 inhibition to improve mitochondrial biogenesis and dopaminergic neurogenesis in rat model of Parkinson's disease. Behav. Brain Res. 378, 112304.
42 Holownia, A., Chwiecko, M. and Farbiszewski, R. (1994) Accumulation of ammonia and changes in the activity of some ammonia metabolizing enzymes during brain ischaemia/reperfusion injury in rats. Mater. Med. Pol. 26, 25-27.
43 Hu, Z., Mao, C., Wang, H., Zhang, Z., Zhang, S., Luo, H., Tang, M., Yang, J., Yuan, Y., Wang, Y., Liu, Y., Fan, L., Zhang, Q., Yao, D., Liu, F., Schisler, J. C., Shi, C. and Xu, Y. (2021) CHIP protects against MPP+/MPTP-induced damage by regulating Drp1 in two models of Parkinson's disease. Aging (Albany N.Y.) 13, 1458-1472.