• 제목/요약/키워드: Perturbation Equation

검색결과 240건 처리시간 0.028초

PERTURBATION ANAYSIS FOR THE MATRIX EQUATION X = I - A*X-1A + B*X-1B

  • Lee, Hosoo
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.123-131
    • /
    • 2014
  • The purpose of this paper is to study the perturbation analysis of the matrix equation $X=I-A^*X^{-1}A+B^*X^{-1}B$. Based on the matrix differentiation, we give a precise perturbation bound for the positive definite solution. A numerical example is presented to illustrate the shrpness of the perturbation bound.

THE CONVERGENCE OF HOMOTOPY METHODS FOR NONLINEAR KLEIN-GORDON EQUATION

  • Behzadi, Shadan Sadigh
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1227-1237
    • /
    • 2010
  • In this paper, a Klein-Gordon equation is solved by using the homotopy analysis method (HAM), homotopy perturbation method (HPM) and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series which its components are computed easily. The uniqueness of the solution and the convergence of the proposed methods are proved. The accuracy of these methods are compared by solving an example.

Floquet 이론과 섭동법에 의한 Mathieu Equation의 안정성해석 (Stability Analysis of Mathieu Equation by Floquet Theory and Perturbation Method)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.734-741
    • /
    • 2013
  • In contrast of external excitations, parametric excitations can produce a large response when the excitation frequency is away from the linear natural frequencies. The Mathieu equation is the simplest differential equation with periodic coefficients, which lead to the parametric excitation. The Mathieu equation may have the unbounded solutions. This work conducted the stability analysis for the Mathieu equation, using Floquet theory and numerical method. Using Lindstedt's perturbation method, harmonic solutions of the Mathieu equation and transition curves separating stable from unstable motions were obtained. Using Floquet theory with numerical method, stable and unstable regions were calculated. The numerical method had the same transition curves as the perturbation method. Increased stable regions due to the inclusion of damping were calculated.

SOLUTION OF A NONLINEAR EQUATION WITH RIEMANN-LIOUVILLES FRACTIONAL DERIVATIVES BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.55-60
    • /
    • 2011
  • The aim of the paper is to apply Homotopy Perturbation Method (HPM) for the solution of a nonlinear fractional differential equation. Finally, the solution obtained by the Homotopy perturbation method has been numerically evaluated and presented in the form of tables and then compared with those obtained by truncated series method. A good agreement of the results is observed.

Analysis of Fiber Nonlinearities by Perturbation Method

  • Lee Jong-Hyung;Han Dae-Hyun;Choi Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.6-12
    • /
    • 2005
  • The perturbation approach is applied to solve the nonlinear Schrodinger equation, and its valid range has been determined by comparing with the results of the split-step Fourier method over a wide range of parameter values. With γ= 2㎞/sup -1/mW/sup -1/, the critical distance for the first order perturbation approach is estimated to be(equation omitted). The critical distance, Z/sub c/, is defined as the distance at which the normalized square deviation compared to the split-step Fourier method reaches 10/sup -3/. Including the second order perturbation will increase Z/sub c/ more than a factor of two, but the increased computation load makes the perturbation approach less attractive. In addition, it is shown mathematically that the perturbation approach is equivalent to the Volterra series approach, which can be used to design a nonlinear equalizer (or compensator). Finally, the perturbation approach is applied to obtain the sinusoidal response of the fiber, and its range of validity has been studied.

Study of Diffusion Controlled Reactions in Liquids: A Perturbation Series Solution and a Numerical Solution of the Smoluchowski Equations

  • Mino Yang;Sangyoub Lee;Kim Yung Sik;Kook Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.529-535
    • /
    • 1989
  • A general perturbation series solution of the Smoluchowski equation is applied to investigate the rate of recombination and the remaining probability of a pair of particles in liquids. The radiative boundary condition is employed and the convergence of the perturbation series is analyzed in terms of a convergene factor in time domain. The upper bound to the error introduced by the n-th order perturbation scheme is also evaluated. The long time behaviors of the rate of recombination and the remaining probability are found to be expressed in closed forms if the perturbation series is convergent. A new and efficient method of purely numerical integration of the Smoluchowski equation is proposed and its results are compared with those obtained by the perturbation method. For the two cases where the interaction between the particles is given by (i) the Coulomb potential and (ii) the shielded Coulomb potential, the agreement between the two results is found to be excellent.

Gravitational Perturbation of Traversable Wormhole Spacetime and the Stability

  • Kang, YuRi;Kim, Sung-Won
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1800-1807
    • /
    • 2018
  • In this paper, we study the gravitational perturbation of traversable wormhole spacetime, especially the Morris-Thorne wormhole spacetime, by using the linearized theory of gravity. We restrict our interest to the first order term and ignore the higher order terms. We assume that the perturbation is axisymmetric. We also assume that the time dependence follows the Fourier decomposition and the angular dependence is expressed in terms of the Legendre functions. As a result, we derive the gravitational perturbation equation of traversable wormhole in terms of a single linear second-order differential equation. As a consequence, we could analyze the unstability of the spacetime with the effective potentials. Furthermore, we consider the interaction between the external gravitational perturbation and the exotic matter, constituting traversable wormholes and its effect on the stability of traversable wormholes.

섭동법을 이용한 공기윤활 슬라이더 베어링의 동특성 해석 (An Analysis of Dynamic Characteristics of Air-Lubricated Slider Bearing by Using Perturbation Method)

  • 강태식;최동훈;정태건
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1520-1528
    • /
    • 2000
  • This study presents a method for determining bearing stiffness and damping coefficients of air-lubricated slider bearing, and shows influences of air-bearing surface geometry(recess depth, crown an d pivot location) on flying attitude and dynamic characteristics. To derive the dynamic lubrication equation, the perturbation method is applied to the generalized lubrication equation which based on linearized Boltzmann equation. The generalized lubrication equation and the dynamic lubrication equation are converted to a control volume formulation, and then, the static and dynamic pressure distributions are calculated by finite difference method. The recess depth and crown of the slider show significantly influence on flying attitude and dynamic characteristics comparing with those of pivot location.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

섭동법을 이용한 30% U 형 공기윤활 슬라이더 베어링의 동특성 해석 (An Analysis of Dynamic Characteristics of 3o% U Slider-Air Bearings by Using Perturbation Method)

  • 강태식;정태건;최동훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.291-296
    • /
    • 1999
  • This study presents a method for determining stiffness and damping coefficients of 30% U slider-air bearings by using perturbation method, and shows that this method is more accurate than steady state method according to the comparison of those with the modal analysis method. Through a generalized lubrication equation, which based on linealized Boltzmann equation, the static and dynamic pressure distributions are calculated by finite volume method.

  • PDF