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Analysis of Fiber Nonlinearities by Perturbation Method
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The perturbation approach is applied to solve the nonlinear Schridinger equation, and its valid
range has been determined by comparing with the results of the split-step Fourier method over
a wide range of parameter values. With 7=2km™mW™  the critical distance for the first order

. o 2, = lkmemW] o
perturbation approach is estimated to be ° P, . The critical distance, z. is defined as
the distance at which the normalized square deviation compared to the split-step Fourier method
reaches 10°. Including the second order perturbation will increase z, more than a factor of two,
but the increased computation load makes the perturbation approach less attractive. In addition,
it is shown mathematically that the perturbation approach is equivalent to the Volterra series
approach, which can be used to design a nonlinear equalizer (or compensator). Finally, the pert-
urbation approach is applied to obtain the sinusoidal response of the fiber, and its range of validity

has been studied.
OCIS codes : 060.2430, 060.4370, 060.4510

I. INTRODUCTION

Recently, K. V. Peddanarappagari and M. Brandt-
Pearce solved the nonlinear Schridinger equation (NL-
SE) by the Volterra series transfer function approach
[1,2,3]. Because this approach gives a closed-form solu-
tion, it can be a useful design tool for a nonlinear equa-
lizer at the output of the fiber. Nonlinear impairments
such as FWM (four-wave mixing) and XPM (cross-
phase modulation) induced crosstalk are also evaluated
using the Volterra series transfer function [4]. However,
its complicated analytical form not only makes it hard
to get physical insight, but also in many cases makes
it less attractive in computational time compared to
the split-step Fourier method. Additionally, its range
of validity, that is, the valid range of the various phy-
sical parameters involved to assure accuracy within an
allowable tolerance, has not been fully studied.

In this paper, the perturbation approach {5] is applied
to solve the normalized NLSE, and it is shown math-
ematically that the approach is equivalent to the Volt-
erra series transfer function method. Next, numerical
results by the perturbation method will be compared
with the result of the split-step Fourier method [6] to
determine its valid range of parameters. Finally, the

sinusoidal response of the normalized NLSE is solved
by the perturbation method. In [7], it was demon-
strated that the sinusocidal analysis could be an alter-
nate, much simpler way of measuring eye opening
penalty (EOP). Therefore, we may get a simple analy-
tical expression to estimate EOP by the perturbation
analysis.

II. PERTURBATION SOLUTION OF
NORMALIZED NLSE

For pulse width T,>1ps, the higher-order nonlin-
earities such as the stimulated Raman scattering (SRS)
and the self-steepening have negligible effects, and the
NLSE can be described in a simpler form by the nor-
malized parameters as below [6]. The normalized NLSE
will make it more convenient to treat various physical
parameters in a unified way.
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nonlinearity r= t/T,, ¢= z/Lp, and U 7) is the
slowly varying envelope normalized by the path avera-
ged power, Pay.

In general, the solution of the NLSE can not be
found in analytical form except for solitons. Therefore,
typical optical communication systems usually require
numerical approaches to solve the NLSE. While a
numerical approach like the split-step Fourier method
is known to be accurate, it is time consuming and
doesn’t provide any physical insight. In this work, we
will attempt to find the perturbation solution of the
normalized NLSE. While the perturbation approach
may not give a solution as accurate as numerical appr-
oaches, the approach can provide better physical insight
to understand how dispersion and nonlinearity interact.
To find the perturbation solution of the normalized
NLSE, let

UE D) =U"ED+eVI(ED)+VIED+ .0 )

where & = N, U"(&.7) is the solution of the dispersion
alone case, and ¢V"(.7) is the first-order nonlinear sol-

ution, €’V®(&,7) is the second-order solution,
and so forth.

In the dispersion alone case, Eq. (1) degenerates into
the linear partial differential equation and the solution
has the form

u(gﬁw)=u(o,w)exp[§sgn(ﬂ2)w2§] 5

where v=3[U(,7)]. 3{#} denotes Fourier transform
with respect to 7> and uw(0,0) is the Fourier transform
of the incident field at ¢=0,U(0,7),

By putting Eq. (2) into Eq. (1), and by equating the
terms proportional to &" separately for each value of n,
we will get consecutive equations as below.
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Here, * denotes the complex conjugate.

Eq. (2) can also be expressed in the frequency domain
as follows.

wé,w) = u' (&, 0)+uV(§,0) +u? (&, 0) +A )

where #”(£.®) is the solution of the dispersion alone
case which is given by Eq. (3). Higher order terms in
the frequency domain are defined to include N para-
meter for simplicity such that uV (€, 0) =3[V, 1)

u‘2)(§,a))=Slng(2)(§, T)J, and so on. In the frequency
domain, higher order terms are solutions of coupled
ordinary differential equations. From Egs. (5) and (6),

auu;(;),é) =%sgn(ﬂ2)a)2u(l)(a),§)
+jN23{U(O)(T,g)rU(O)(T,f)} (8)
WD Lsgn(p )0 0.5)
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© M | 77 1
OO0 @0 U8y )

where UV(z,6)=eVV(&,7),

By solving Eqgs (4), (5), (or Egs (8), (9)) and so forth
in a consecutive way, we can obtain an approximate
solution of the NLSE. We may expect that including
higher order terms will improve the accuracy of the
perturbed solution of Eq. (7). However, calculations of
higher order terms will increase the numerical load
tremendously, which makes the perturbation approach
less attractive. Therefore it will be interesting to find
the valid range of N and propagation distance for
which the perturbation solution, up to the first or the
second order terms, is valid within a given tolerance.
The valid range of parameter values will be discussed
in the next section.

ITII. COMPARISON OF PERTURBATION
SOLUTION WITH SPLIT-STEP
FOURIER METHOD

In this section, the valid range of the perturbation
solution developed in the previous section will be
determined. The split-step Fourier method will be used
as a reference, and its accuracy will be addressed first
by comparing with known theoretical predictions. It is
known that Eq. (1) leads to soliton solutions by
applying the inverse scattering method [6]. That is,
when the input pulse is U(0,7)=sech(T), the analytical
solution to Eq.(1) in the anomalous dispersion region
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with N=1 gives [6]
U(&,7) = seckr)exp(- j&/2) (10)

Eq. (10) is ideally suited to see the accuracy of the
split-step Fourier method because the solution is the
result of interplay between dispersion and nonlinearity,
and it has a simple form. Figure 1 compares Eq. (10)
with the simulation result by the split-step Fourier
method at ¢=z/LD=15. From the figure, we can
observe that the difference between the two curves is
negligible. (Note the magnitude scale is logarithmic.)
Since typical values of LD are in the range of a few
hundred km to thousand km, the simulation distance
¢=15 could be over transoceanic distances. In the
simulation, the step size 4% = 0.01 is used, which will
result in 0.01 rad of the maximum phase shift by the
nonlinear operator

To compare two curves generated by two different
methods, say, ‘A’ method and ‘B’ method, the norm-
alized square deviation (NSD) is defined as [1],

oo

jK/A(é,r)-—l/B(é,rﬂzdr
NSD(&) ==
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where U4(&.7) = output field envelope by method ‘A’,

and Ug($,7) = output field envelope by method ‘B’.
Figure 2 shows the calculated NSDs as a function of
propagation distance resulting from the split-step met-
hod compared to the analytical solution, Eq.(10). We
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FIG. 1. Comparison of fundamental soliton output by
the split-step Fourier method with theoretical prediction.
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FIG. 2. NSD evolutions of soliton transmission by the
split-step Fourier method.

observe that the NSD is greatly affected by the simul-
ation step size 4¢ as expected. However, NSDs remain
almost constant at very small values up to the trans-
mission distance ¢=15. For example, when 4¢ = 0.01,
the NSD remains below 10" up to £=15. These results
indicate that the split-step Fourier method is very
reliable, and can serve as a reference to measure the
valid range of perturbation method if 4¢ is small
enough. For the remainder of this work, 45 = 0.01 will
be used for the split-step method.

Now the perturbation solution of the normalized
NLSE is compared with simulation results. Input pulse

NSD by Perturbation Method with N=1
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FIG. 3. NSD by perturbation method with N=1 (solid
with* = Ist order and £ >0, dash dot with* = 1st
order and B; < 0, solid with o = 2nd order and 3> >0,
dash dot with o = 2nd order and B; <0).
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shape is assumed to be a Gaussian such that U(0,7)=

1,
EXP(_ET } Figure 3 shows the NSD between pertur-

bation solutions and numerical simulations when N =1.
As expected, the perturbation solutions up to the

second order give about one order smaller NSD’ s com-
pared to the results from the first order solutions. How-
ever, as the propagation distance increases, the pertur-
bation solution results in larger errors (larger NSD
values) regardless of dispersion region. These results
suggest that the perturbation solution is limited in its
numerical accuracy compared to the split-step method.
Figure 4 compares output pulse shapes by the first
order perturbation solution with split-step simulation
results at §=0.2 ((a) and (b)) and at ¢=0.5 ((c) and
(d)). When ¢=0.5, the differences between the two
curves become noticeable while the differences are
negligible when ¢=0.2 To decide the valid range of
parameters for use of the perturbation solution, we
need to determine an allowable tolerance level. From
Figure 3 and Figure 4, the maximum allowable NSD
value is chosen to be 10°, which occurs between (a)
and (c) in Figure 3.

Figure 5 shows the critical distance (= &), which
is defined as the distance at which NSD =107, as a
function of N. The curves of ¢ in logarithmic plots are
almost straight lines for a broad range of N values. The
good linearity between the calculated & and N* ind-
icates a near constant value for their product. That is,

() 2/, = 0.2, p, <0
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FIG. 4. Comparison of pulse shapes by the first order
perturbation method and split-step method (a) z/Lp =0.2,
B2 >0, (b) z/Lp =0.2, B, <0, (c) z/Lp =0.5, B2 >0, (d)
z/Lp =0.5, 8, <0.

FIG. 5. Normalized critical distances at NSD = 10°°
{a) B2 > 0 (*: 1st order, o: 2nd order) (b) B < 0 (*:
1st order, o: 2nd order).

N*g =N*Ze
the first order perturbation solution gives ’ L,

z(‘

L_N=03 in both the normal and anomalous dispersion
regions. When the second order is included, the product
is approximately 0.7. Since N’=Lp/Ly, and Ly=1/7 Pos,
we can estimate the critical distance z.. With 7 =
2km'mW™, the critical distance by the first order

z, = 150[lcm-mW]

perturbation is estimated as P, . For

example, if we take the peak power P,=2mW, and
amplifier spacing is assumed to be 80km with 0.25dB/

km loss of the fiber, the path-averaged power is Py
Pﬁ

1%
P, =—[Pe=d= ‘
= 043mW ( * za-j o . ), this res-

ults in z. ~=350km. This means that we can get less
than 10° of NSD using the first order perturbation
solution up to z = 350km. When we include the second
order term, the critical distance extends to nearly
800km. However, Figure 3 indicates that the critical
distances can be substantially shorter if a smaller value
of NSD is required to have more accurate results.

(1-e™*)

IV. SINUSOKDAL RESPONSE USING
PERTURBATION ANALYSIS

In reference [7], it was demonstrated that the sinu-
soidal analysis could be an alternate much simpler way
of measuring eye-opening penalty (EOP). In this sect-
ion, the sinusoidal response of the NLSE is solved by
the perturbation method developed in section 2.

From Eq. (5), the first-order perturbed output, (&, )
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=eV¥(&,70), is related to the linear output, U”(.7), as
below.

UPET)_ jIUNED)
o0& 2 o7 (12)

In Eq.(12), the fiber is assumed to be in the normal
dispersion region where the sinusoidal analysis has a

broader range of agreement with EOP than in the ano-
malous region. When the input sinusoid is given as the

11
W, 7) =§+§cosa)pr)’

+INYUO D) U0 )

raised-cosine form U%,r)
1 1, 1 ; Wl
9798 % fom Eq. (4), which will make the

nonlinear term in Eq. (12) periodic. Therefore the first-
order perturbed output U({.7) will also be periodic,

and we can express the first-order output in terms of
a Fourier series.

oo N (D) g gy, Tyt
U (@r)—n;jﬂ (&) (13)

with initial condition C,’(0) = 0 for all n.

The Fourier series coefficients, Cn(1), can be eval-
uated by putting Eq. (13) into Eq. (12) and then equa-
ting terms of the same frequency. Since the highest

frequency component in e J)FU P¢is 3wp, we
need to set up differential equations up to n = 3. The
resulting Fourier series coefficients for each n value up
ton = 3 are

2

N
=0, CP(&)=
n 0 (&) Tow

(cosw§§—1)+y( N&+—— 16\; sine 5]

s~ {7

cos| —w.& [—cos :
?a)p 27 2

’——-N 551n[m2§)+ N [ ! 'n{w’z’g}l-ﬂfcos[w;é]]
64 2 8a)p 2 64 2

n=2, CV(&)= 3]?\2 - eosa?é) - cos(@?e)

r

n=1 CP(&) =~

-1+ j(2 sin(Qa);f) - sin(a;r;’é:)]

2

N
=3, C0(E) =

~1+ j(sin(g w,£)—sin(w, & )]

[cos(g W3E) —cos(w’)

Now the output field is approximated as the sum of
the linear solution and the first-order perturbation sol-

ution such that

U7 =UOEn)+ U €, )
4c0 + O )+ l0? + 0O f,)+COF 0, +CPfBw,)]
S0 +00 )+ O +C0 f(@,)+CP1C0,)+CPf(B0,)

=C,+C f(@,)+C,f20,)+C,f(3o,) (14)
@, —]wrﬁ)__]-
where H@,)= e +e o 2, and

2

N o,
sin @
160 4 éJ

2
C,=CY+0c%= l:; 11;2(1 cosa)f):l I: N*¢+

C,=C9+c{
{é - 3222 ]cos[g);—g)+ 31;:2 cos(g a);cf) ZSNEsi [6025 )
+4JN ((Z+8—]s r{wj ] 64§ cos(%i J]

Finally, the output optical power signal is obtained as

P& 1) =0 o) =[U &)+ UV (&)

=C, +C\f(®,)+C,f(20,)+C,f (3, )|2 (15)

Eq. (15) has various frequency components. However,
we are interested only in the @ p component (the fund-
amental Fourier series component), which is expressed as

PE0), =2ReC. O+ RAC. IR} (1)

where* denotes the complex conjugate.

It is worth remembering that the perturbation analy-
sis has a limited range of applicability because of accur-
acy as discussed in section 3. To estimate the valid
range of Eq. (16), the critical distance at NSD = 10-3
using the first-order perturbation solution is plotted in
Figure 6 (a). The NSD curve compares the distance of
1dB SRP (sinusoidal response penalty) resulting from
simulations as a function of N2. SRP is defined as

SRP/dB] = —1010g(,£1(i)’}

C.,0) (a7

where |C1( s )| is the magnitude of the fundamental
Fourier series coefficient of the received signal at §.
Figure 6 (a) indicates that Eq.(16) can be used when
N? is less than 3. In Figure 6 (b), the |Cl(§)‘ by simu-
lation is compared with Eq. (16) when N° = 3. The



Analysis of Fiber Nonlinearities by Perturbation Method - Jong-Hyung Lee et ol 11

@)
10
ok ~+- Sinusoidal Analysis .
g =0 NSD=10"
1w0°f Nn3 \
m-o’ “y' * *
1 1 10 10 10 10
N=lofly
®)
04
038 \2_4 k
03l b
0.25 e — .
- 12 "
LS M\.\ / 4
ol -
c.0s! \/
° . . . L
o 0.08 0.1 g 0.15 0.2 0.28
=0.07 0.1

FIG. 6. (a) Comparison of the critical distance at NSD
=10° using up to the first order perturbation solution and
the simulated 1dB penalty distance of sinusoidal response
in the normal dispersion region. (b) Comparison of the
fundamental Fourier series coefficient, |C; | when N° = 3.

normalized distance corresponding to 1 dB SRP is around
0.07 from Eq. (16), but the simulation result gives
approximately 0.11. For better accuracy, we may inclu-
de higher-order perturbed solutions in Eq. (16). How-
ever, for a modest fiber nonlinearities ( N* < 3), the
perturbation approach can be used to get a first order
system degradation due to fiber dispersion and fiber
nonlinearities.

V. CONCLUSIONS

We have shown that the perturbation approach is
equivalent to the Volterra series method at least up to
the third-order of the Volterra approach which is app-
ealing for design of a nonlinear compensator due to its
closed form solution. In this paper, we determined the
validity range of the perturbation approach (that is,
the Volterra approach) and the sinusoidal response of
the NLSE is also solved by the perturbation method
to have an analytical, thus much simpler means of
system evaluation.

We found that the critical distance at which NSD
reaches its maximum allowable value (10’3, in this
work) is inversely proportional to the average pulse
power, P., The proportionality is evaluated to be
around 150 [km + mW]. The second-order solution will
increase the critical distance more than a factor of two,
but the increased computation load makes it less attra-
ctive. This is mainly because the motivation of the per-
turbation approach (or Volterra approach) is not for
computational efficiency but for a possible analytical tool

to optimize a nonlinear fiber link with a nonlinear equ-
alizer. Finally, the sinusoidal response has also been der-
ived analytically based on the perturbation analysis.
Since the perturbation analysis has a limited range of
validity, the derived analytical expression also has a
limited range of applicability. Comparison with numerical
results reveals that the derived expression may be used
when N <3. Within this range, the analytically expressed
sinusoidal response can be used to optimize a nonlinear
fiber link to a first order.
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APPENDIX

Perturbation Approach and Volterra Series Transfer
Function

In the Volterra series approach [1], the linear
transfer function, Hi(¢,w), and the third-order non-
linear transfer function (third-order Volterra kernel),
HyS, w1, w2 ws), can be expressed as below in the
normalized units (H¥$, w1, w2,) = 0),

H (¢ )= exp[ésgn(ﬂz)wzg] A1)

Hy(o,0,,0,,8)

exp[% sgn(f, )(azl2 - w22 + 0)32 )5] - exp[% sgn(f, o, —o, + a)s)zf]
=jN? |

%Sgn(ﬂz )(5"12 - w22 + a)sz) - % sgn(f, (@, — o, + o, b
(A.2)

Therefore, the normalized field spectrum is approxi-
mated as below by ignoring higher order terms.

ww,8) = uy (0,8) +u (@,&)
=Hl(a),§)u(w)+(2—71r)7”H3(w1,a)2,a)—a)l

+ o, S)u(w, )U‘(WQ)U(C‘)‘QH + o, )do,do, (A.3)

where u( @ )=u(w,0).

In Eq.(A.3), 4 (@,£)is equivalent to the unperturbed
solution, v (@.£), because both are the linear solution
of the NLSE. In addition, we can show that the third-
order Volterra kernel output, % (@,$), is equivalent to
the first-order perturbed solution, u(l)(a),é ) in Eq. (7).
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By differentiating vy’ (@,¢) with respect to ¢,

duy (@,8) _
35
oH (0, w,,0~0, +1,,E) . ~
(2,[) ” FY: u(@, Yu" (0, Jul@ — o, + @, )do,do,
(A4)
where

oH ,(0,,0,,0~ o, +,, .1
o2, g; BT (’r)=]§sgn(ﬂ2)(a)l~a)2+a)3)2H3(wl,a)2,w3,§)

+jN2H1(w1’§)H;(a)2’§)H1(a)3’§)
Then

Iy (@,8) _
¢

(2 7 H] sgn( 3,0’ H, (0, w,,0— @, -

+ @y, § (@, )U*(a)g Ju(@ —~ o, + @, )do,do,

(2 : *H (0, HH, (0, ) H (0~ o,

+ @y, o, )U‘ (@)@ ~ @, + w, )dw, dw,

= —%aﬂ sgn(ﬂQ)u(S) (@, f) + J:[Hl(a)l’ g:)H (wg,f)H (@

@2n)*
-, + 0, (o, )u‘(a)Q)u(a) -, +w,)dw,do,

—-Q—w *sgn(By)uy’ (@,8)

+jN {(2 7 [Ju ‘”(wl,f)u‘“(wz,é)h‘”(w-wl+w2,§>dwldw2}

il

2 (3 2 0 0 |
%sgn(ﬂz)w uy(@,8) + N S{U”(’ o U0 (A.5)

where u’(@,8) =3¢}

The resulting equation has the same form of Eq. (8)
which comes from the perturbation approach. Ther-
efore we can conclude that both of these approaches
are equivalent at least up to the third-order of the
Volterra approach.
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