DOI QR코드

DOI QR Code

Gravitational Perturbation of Traversable Wormhole Spacetime and the Stability

  • Kang, YuRi (Department of Science Education, Ewha Womans University) ;
  • Kim, Sung-Won (Department of Science Education, Ewha Womans University)
  • Received : 2017.10.10
  • Accepted : 2018.10.29
  • Published : 2018.12.30

Abstract

In this paper, we study the gravitational perturbation of traversable wormhole spacetime, especially the Morris-Thorne wormhole spacetime, by using the linearized theory of gravity. We restrict our interest to the first order term and ignore the higher order terms. We assume that the perturbation is axisymmetric. We also assume that the time dependence follows the Fourier decomposition and the angular dependence is expressed in terms of the Legendre functions. As a result, we derive the gravitational perturbation equation of traversable wormhole in terms of a single linear second-order differential equation. As a consequence, we could analyze the unstability of the spacetime with the effective potentials. Furthermore, we consider the interaction between the external gravitational perturbation and the exotic matter, constituting traversable wormholes and its effect on the stability of traversable wormholes.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. P. A. R. Ade et al. (Planck Collaboration), Astronomy and Astrophysics 571, 1 (2014).
  2. A. Melchiorri, L. Mersini, C. J. Odman and M. Trodden, Phys. Rev. D 68, 043509 (2003). https://doi.org/10.1103/PhysRevD.68.043509
  3. E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X
  4. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988). https://doi.org/10.1119/1.15620
  5. VIRGO, LIGP SCIENTIFIC collaborations, B. P. Abbott et al. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102
  6. VIRGO, LIGP SCIENTIFIC collaborations, B. P. Abbott et al. Phys. Rev. Lett. 116, 221101 (2016). https://doi.org/10.1103/PhysRevLett.116.221101
  7. R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011). https://doi.org/10.1103/RevModPhys.83.793
  8. K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 2 (1999). https://doi.org/10.12942/lrr-1999-2
  9. R. A. Konoplya and C. Molina, Phys. Rev. D 71, 124009 (2005). https://doi.org/10.1103/PhysRevD.71.124009
  10. J. P. S. Lemos, F. S. N. Lobo and S. Oliverira, Phys. Rev. D 68, 064004 (2003). https://doi.org/10.1103/PhysRevD.68.064004
  11. V. Cardoso and J. P. S. Lemos, Phys. Rev. D 63, 124015 (2001). https://doi.org/10.1103/PhysRevD.63.124015
  12. S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972). https://doi.org/10.1103/PhysRevLett.29.1114
  13. E. Berti and K. D. Kokkotas, Phys. Rev. D 67, 064020 (2003). https://doi.org/10.1103/PhysRevD.67.064020
  14. S.-W. Kim, Nuovo Clim. 120B, 1235 (2005).
  15. P. E. Kashargin and S. V. Sushkov, Phys. Rev. D 78, 064071 (2008). https://doi.org/10.1103/PhysRevD.78.064071
  16. K. A. Bronnikov, R. A. Konoplya and A. Zhidenko, Phys. Rev. D. D 86, 024028 (2012). https://doi.org/10.1103/PhysRevD.86.024028
  17. A. A. Abdujabbarov and B. J. Ahmedov, Astrophys. Space Sci. 321, 225 (2009). https://doi.org/10.1007/s10509-009-0023-9
  18. R. A. Konoplya and A. Zhidenko, J. Cos. Astropart. Phys. 12, 043 (2016).
  19. Y. Kang and S.-W. Kim, J. Korean Phys. Soc. 65, 913 (2014). https://doi.org/10.3938/jkps.65.913
  20. S. Chandrasekhar, Proc. Roy. Soc. Lond. A 343, 289 (1975). https://doi.org/10.1098/rspa.1975.0066
  21. J. L. Friedman, Proc. Roy. Soc. Lond. A 335, 163 (1973). https://doi.org/10.1098/rspa.1973.0120
  22. S. Sushkov, Phys. Rev. D 71, 043520 (2005). https://doi.org/10.1103/PhysRevD.71.043520
  23. M. Sullivan et al., Astrophys. J. 737, 102 (2011). https://doi.org/10.1088/0004-637X/737/2/102
  24. F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005). https://doi.org/10.1103/PhysRevD.71.084011
  25. E. Komatsu, Astrophys. J. Suppl. 192, 18 (2011). https://doi.org/10.1088/0067-0049/192/2/18

Cited by

  1. The gravitational perturbation of a Morris–Thorne wormhole and the Newman–Penrose formalism vol.37, pp.10, 2018, https://doi.org/10.1088/1361-6382/ab7dd8
  2. Accelerated universe with a traversable wormhole from Visser's massive gravity vol.78, pp.1, 2018, https://doi.org/10.1007/s40042-020-00011-z