• Title/Summary/Keyword: Personalized therapy

Search Result 108, Processing Time 0.03 seconds

A new minimally invasive guided endodontic microsurgery by cone beam computed tomography and 3-dimensional printing technology

  • Kim, Jong-Eun;Shim, June-Sung;Shin, Yooseok
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.29.1-29.7
    • /
    • 2019
  • Endodontic microsurgery is defined as the treatment performed on the root apices of an infected tooth, which was unresolved with conventional root canal therapy. Recently, the advanced technology in 3-dimensional model reconstruction based on computed tomography such as cone beam computed tomography has opened a new avenue in application of personalized, accurate diagnosis and has been increasingly used in the field of dentistry. Nevertheless, direct intra-oral localization of root apex based on the 3-dimensional information is extremely difficult and significant amount of bone removal is inevitable when freehand surgical procedure was employed. Moreover, gingival flap and alveolar bone fenestration are usually required, which leads to prolonged time of surgery, thereby increasing the chance of trauma as well as the risk of infection. The purpose of this case report is to present endodontic microsurgery using the guide template that can accurately target the position of apex for the treatment of an anterior tooth with calcified canal which was untreatable with conventional root canal therapy and unable to track the position of the apex due to the absence of fistula.

Future Directions of Pharmacovigilance Studies Using Electronic Medical Recording and Human Genetic Databases

  • Choi, Young Hee;Han, Chang Yeob;Kim, Kwi Suk;Kim, Sang Geon
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.319-330
    • /
    • 2019
  • Adverse drug reactions (ADRs) constitute key factors in determining successful medication therapy in clinical situations. Integrative analysis of electronic medical record (EMR) data and use of proper analytical tools are requisite to conduct retrospective surveillance of clinical decisions on medications. Thus, we suggest that electronic medical recording and human genetic databases are considered together in future directions of pharmacovigilance. We analyzed EMR-based ADR studies indexed on PubMed during the period from 2005 to 2017 and retrospectively acquired 1161 (29.6%) articles describing drug-induced adverse reactions (e.g., liver, kidney, nervous system, immune system, and inflammatory responses). Of them, only 102 (8.79%) articles contained useful information to detect or predict ADRs in the context of clinical medication alerts. Since insufficiency of EMR datasets and their improper analyses may provide false warnings on clinical decision, efforts should be made to overcome possible problems on data-mining, analysis, statistics, and standardization. Thus, we address the characteristics and limitations on retrospective EMR database studies in hospital settings. Since gene expression and genetic variations among individuals impact ADRs, pharmacokinetics, and pharmacodynamics, appropriate paths for pharmacovigilance may be optimized using suitable databases available in public domain (e.g., genome-wide association studies (GWAS), non-coding RNAs, microRNAs, proteomics, and genetic variations), novel targets, and biomarkers. These efforts with new validated biomarker analyses would be of help to repurpose clinical and translational research infrastructure and ultimately future personalized therapy considering ADRs.

Molecular Pathology of Gastric Cancer

  • Kim, Moonsik;Seo, An Na
    • Journal of Gastric Cancer
    • /
    • v.22 no.4
    • /
    • pp.273-305
    • /
    • 2022
  • Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.

Cu-64 as a Cancer Theranostics Agent

  • Kwang Il Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • Theranostics, a composite word of therapy and diagnosis, is known as personalized medicine and the concept of diagnosis and treatment at the same time. In nuclear medicine, it means performing both therapeutic and diagnostic radioisotope therapy using the same target molecule. The increased production and utilization of 64Cu opens a new era of theranostics. The studies introduced here have shown that 64CuCl2 and various compounds or biomolecules labeled with 64Cu are unique radiopharmaceuticals with physiological properties suitable for use as diagnostic and therapeutic agents. So far, these two abilities have been described only for radioactive iodine. Although 64Cu has complex chemical properties compared to other PET radioisotopes such as 68Ga, it has an appropriate half-life and enables high-quality PET images similar to 18F, which is an advantage in terms of diagnosis. In addition, since it also has therapeutic properties through the release of β- particles and Auger electrons by electron capture, radiopharmaceuticals using 64Cu stand for innovative radiopharmaceuticals for theranostic purposes. Therefore, based on the initial results obtained using 64Cu as a therapeutic agent, it is expected that additional research on the application of 64Cu will lead to a new era in the theranostics field.

iPSC technology-Powerful hand for disease modeling and therapeutic screen

  • Kim, Changsung
    • BMB Reports
    • /
    • v.48 no.5
    • /
    • pp.256-265
    • /
    • 2015
  • Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Genomic Profiling of Liver Cancer

  • Lee, Ju-Seog
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.180-185
    • /
    • 2013
  • Development of liver cancers is driven largely by genomic alterations that deregulate signaling pathways, influencing growth and survival of cancer cells. Because of the hundreds or thousands of genomic/epigenomic alterations that have accumulated in the cancer genome, it is very challenging to find and test candidate genes driving tumor development and progression. Systematic studies of the liver cancer genome have become available in recent years. These studies have uncovered new potential driver genes, including those not previously known to be involved in the development of liver cancer. Novel approaches combining multiple datasets from patient tissues have created an unparalleled opportunity to uncover potential new therapeutic targets and prognostic/predictive biomarkers for personalized therapy that can improve clinical outcomes of the patients with liver cancer.

Molecular characterization in chromosome 11p15.5 related imprinting disorders Beckwith-Wiedemann and Silver-Russell syndromes

  • Shin, Young-Lim
    • Journal of Genetic Medicine
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • Epigenetics deals with modifications in gene expression, without altering the underlying DNA sequence. Genomic imprinting is a complex epigenetic phenomenon that refers to parent-of-origin-specific gene expression. Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are congenital imprinting disorders with mirror opposite alterations at the genomic loci in 11p15.5 and opposite phenotypes. BWS and SRS are important imprinting disorders with the increase of knowledge of genetic and epigenetic mechanisms. Altered expression of the imprinted genes in 11p15.5, especially IGF2 and CDKN1C, affects fetal and postnatal growth. A wide range of imprinting defects at multiple loci, instead of a restricted locus, has been shown in some patients with either BWS or SRS. The development of new high-throughput assays will make it possible to allow accurate diagnosis, personalized therapy, and informative genetic counseling.

Nano-medicine effectiveness in pediatric patients: An artificial intelligence investigation

  • Shaona Wang;Fan Yang
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Emerge of nanotechnology has affected many aspects of our life and also triggers research studies in many fields. Nano-medicine are proven to be effective in encountering diseases. In the present study, aspects of the applications and effectiveness of nano-medicine in pediatrics patients are studied. In this regard, using experimental data of previous published researches, combination and dose of nano-medicines are optimized using response surface method and neural-fuzzy inference network. The input parameters of the selected multiple nano-medicines are dose and type and the output is the effectiveness of the combinations using IC50 parameter. A detailed parameter study is presented to observe effects of each inputs on the IC50. The results indicate that personalized scaling of nano-medicine is required in therapy of pediatric diseases such as cancers.

Immunopathogenesis of childhood idiopathic nephrotic syndrome

  • Hae Il Cheong
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Pediatric nephrotic syndrome (NS) is a clinical syndrome characterized by massive proteinuria, hypoalbuminemia, and generalized edema. Most childhood NS cases are idiopathic (with an unknown etiology). Traditional therapeutic approaches based on immunosuppressive agents largely support the key role of the immune system in idiopathic NS (INS), especially in the steroid-sensitive form. Although most previous studies have suggested the main role of T cell dysfunction and/or the abnormal secretion of certain glomerular permeability factors, recent studies have emphasized the role of B cells since the therapeutic efficacy of B cell depletion therapy in inducing and/or maintaining prolonged remission in patients with INS was confirmed. Furthermore, several studies have detected circulating autoantibodies that target podocyte proteins in a subset of patients with INS, suggesting an autoimmune-mediated etiology of INS. Accordingly, a new therapeutic modality using B cell-depleting drugs has been attempted, with significant effects in a subset of patients with INS. Currently, INS is considered an immune-mediated disorder caused by a complex interplay between T cells, B cells, soluble factors, and podocytes, which may vary among patients. More in-depth investigations of the pathogenic pathways of INS are required for an effective personalized therapeutic approach and to define precise targets for therapeutic intervention.