DOI QR코드

DOI QR Code

Genomic Profiling of Liver Cancer

  • Lee, Ju-Seog (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
  • Received : 2013.10.23
  • Accepted : 2013.11.21
  • Published : 2013.12.31

Abstract

Development of liver cancers is driven largely by genomic alterations that deregulate signaling pathways, influencing growth and survival of cancer cells. Because of the hundreds or thousands of genomic/epigenomic alterations that have accumulated in the cancer genome, it is very challenging to find and test candidate genes driving tumor development and progression. Systematic studies of the liver cancer genome have become available in recent years. These studies have uncovered new potential driver genes, including those not previously known to be involved in the development of liver cancer. Novel approaches combining multiple datasets from patient tissues have created an unparalleled opportunity to uncover potential new therapeutic targets and prognostic/predictive biomarkers for personalized therapy that can improve clinical outcomes of the patients with liver cancer.

Keywords

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108. https://doi.org/10.3322/canjclin.55.2.74
  2. Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG, Lee JS. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat 2013;45:1-14. https://doi.org/10.4143/crt.2013.45.1.1
  3. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology 2004;127:1372-1380. https://doi.org/10.1053/j.gastro.2004.07.020
  4. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999;340: 745-750. https://doi.org/10.1056/NEJM199903113401001
  5. El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 2004;127(5 Suppl 1):S27-S34. https://doi.org/10.1053/j.gastro.2004.09.013
  6. Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004;5:215-219. https://doi.org/10.1016/S1535-6108(04)00058-3
  7. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003;362:1907-1917. https://doi.org/10.1016/S0140-6736(03)14964-1
  8. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31:339-346. https://doi.org/10.1038/ng0802-339
  9. Llovet JM, Bustamante J, Castells A, Vilana R, Ayuso Mdel C, Sala M, et al. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 1999;29:62-67. https://doi.org/10.1002/hep.510290145
  10. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960;25: 85-109.
  11. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258:818-821. https://doi.org/10.1126/science.1359641
  12. Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade: results of an explorative CGH meta-analysis. Br J Cancer 2005;92: 935-941. https://doi.org/10.1038/sj.bjc.6602448
  13. Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 1999;29:1858-1862. https://doi.org/10.1002/hep.510290636
  14. Zimonjic DB, Keck CL, Thorgeirsson SS, Popescu NC. Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology 1999;29:1208-1214. https://doi.org/10.1002/hep.510290410
  15. Poon TC, Wong N, Lai PB, Rattray M, Johnson PJ, Sung JJ. A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data. Gastroenterology 2006; 131:1262-1270. https://doi.org/10.1053/j.gastro.2006.08.014
  16. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403:503-511. https://doi.org/10.1038/35000501
  17. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000;406:536-540. https://doi.org/10.1038/35020115
  18. Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 2004;40: 667-676. https://doi.org/10.1002/hep.20375
  19. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002;8:816-824. https://doi.org/10.1038/nm733
  20. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-536. https://doi.org/10.1038/415530a
  21. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999-2009. https://doi.org/10.1056/NEJMoa021967
  22. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207-211. https://doi.org/10.1038/2524
  23. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999;23:41-46.
  24. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 2005;4: 346-355. https://doi.org/10.1074/mcp.T500003-MCP200
  25. Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J, Petricoin EF 3rd, et al. Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 2003;3: 2091-2100. https://doi.org/10.1002/pmic.200300592
  26. Haab BB. Antibody arrays in cancer research. Mol Cell Proteomics 2005;4:377-383. https://doi.org/10.1074/mcp.M500010-MCP200
  27. Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 2003;3:317-325. https://doi.org/10.1016/S1535-6108(03)00086-2
  28. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011;12:499-510. https://doi.org/10.1038/nrg3012
  29. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 2011;43:464-469. https://doi.org/10.1038/ng.804
  30. Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 2011;43:828-829. https://doi.org/10.1038/ng.903
  31. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012;44:760-764. https://doi.org/10.1038/ng.2291
  32. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012;44:694-698. https://doi.org/10.1038/ng.2256
  33. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012;44:765-769. https://doi.org/10.1038/ng.2295
  34. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008;359: 1995-2004. https://doi.org/10.1056/NEJMoa0804525
  35. Woo HG, Park ES, Cheon JH, Kim JH, Lee JS, Park BJ, et al. Gene expression-based recurrence prediction of hepatitis B virus- related human hepatocellular carcinoma. Clin Cancer Res 2008;14:2056-2064. https://doi.org/10.1158/1078-0432.CCR-07-1473
  36. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003;9:416-423. https://doi.org/10.1038/nm843
  37. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12:410-416. https://doi.org/10.1038/nm1377
  38. Lee JS, Thorgeirsson SS. Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer. Hepatology 2002;35:1134-1143. https://doi.org/10.1053/jhep.2002.33165
  39. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 2004;36:1306-1311. https://doi.org/10.1038/ng1481
  40. Lee JS, Thorgeirsson SS. Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 2004;127(5 Suppl 1):S51-S55. https://doi.org/10.1053/j.gastro.2004.09.015
  41. Lee JS, Grisham JW, Thorgeirsson SS. Comparative functional genomics for identifying models of human cancer. Carcinogenesis 2005;26:1013-1020. https://doi.org/10.1093/carcin/bgi030
  42. Lee JS, Thorgeirsson SS. Genetic profiling of human hepatocellular carcinoma. Semin Liver Dis 2005;25:125-132. https://doi.org/10.1055/s-2005-871192
  43. Thorgeirsson SS, Lee JS, Grisham JW. Functional genomics of hepatocellular carcinoma. Hepatology 2006;43(2 Suppl 1): S145-S150. https://doi.org/10.1002/hep.21063
  44. Thorgeirsson SS, Lee JS, Grisham JW. Molecular prognostication of liver cancer: end of the beginning. J Hepatol 2006; 44:798-805. https://doi.org/10.1016/j.jhep.2006.01.008
  45. Thorgeirsson SS. Genomic decoding of hepatocellular carcinoma. Gastroenterology 2006;131:1344-1346. https://doi.org/10.1053/j.gastro.2006.08.060
  46. Woo HG, Park ES, Lee JS, Lee YH, Ishikawa T, Kim YJ, et al. Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res 2009;69:4059-4066.
  47. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-1068. https://doi.org/10.1038/nature07385
  48. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474:609-615. https://doi.org/10.1038/nature10166
  49. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489:519-525. https://doi.org/10.1038/nature11404
  50. International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature 2010;464:993-998. https://doi.org/10.1038/nature08987
  51. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487:330-337. https://doi.org/10.1038/nature11252

Cited by

  1. Relatively Small Contribution of Methylation and Genomic Copy Number Aberration to the Aberrant Expression of Inflammation-Related Genes in HBV-Related Hepatocellular Carcinoma vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0126836
  2. Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression vol.40, pp.3, 2017, https://doi.org/10.1007/s13402-017-0321-0