DOI QR코드

DOI QR Code

Current Status and Future Promise of the Human Microbiome

  • Received : 2013.05.31
  • Accepted : 2013.06.05
  • Published : 2013.06.30

Abstract

The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Keywords

References

  1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007;449:804-10. https://doi.org/10.1038/nature06244
  2. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012;489:231-41. https://doi.org/10.1038/nature11551
  3. Krznaric Z, Vranesic Bender D, Kunovic A, Kekez D, Stimac D. Gut microbiota and obesity. Dig Dis 2012;30:196-200. https://doi.org/10.1159/000336965
  4. Aslam Z, Yasir M, Khaliq A, Matsui K, Chung YR. Too much bacteria still unculturable. Crop Environ 2010;1: 59-60.
  5. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 1998;5:R245-9. https://doi.org/10.1016/S1074-5521(98)90108-9
  6. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science 2005;308:1635-8. https://doi.org/10.1126/science.1110591
  7. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480-4. https://doi.org/10.1038/nature07540
  8. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science 2009;326:1694-7. https://doi.org/10.1126/science.1177486
  9. Scholz MB, Lo CC, Chain PS. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 2012;23:9-15. https://doi.org/10.1016/j.copbio.2011.11.013
  10. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242-9. https://doi.org/10.1038/nature11552
  11. von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 1997;21:213-29. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  12. Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 2011;6:e17447. https://doi.org/10.1371/journal.pone.0017447
  13. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J 2009;3:179-89. https://doi.org/10.1038/ismej.2008.108
  14. Turnbaugh PJ, Gordon JI. An invitation to the marriage of metagenomics and metabolomics. Cell 2008;134:708-13. https://doi.org/10.1016/j.cell.2008.08.025
  15. Methe BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, et al; Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012;486:215-21. https://doi.org/10.1038/nature11209
  16. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al; Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14. https://doi.org/10.1038/nature11234
  17. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307:1915-20. https://doi.org/10.1126/science.1104816
  18. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002;22:283-307. https://doi.org/10.1146/annurev.nutr.22.011602.092259
  19. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol 2010;26:5-11. https://doi.org/10.1097/MOG.0b013e328333d751
  20. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65. https://doi.org/10.1038/nature08821
  21. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-80. https://doi.org/10.1038/nature09944
  22. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-3. https://doi.org/10.1038/4441022a
  23. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottiere HM, Raes J, et al. A metagenomic insight into our gut's microbiome. Gut 2013;62:146-58. https://doi.org/10.1136/gutjnl-2011-301805
  24. Manichanh C, Chapple CE, Frangeul L, Gloux K, Guigo R, Dore J. A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library. Nucleic Acids Res 2008;36: 5180-8. https://doi.org/10.1093/nar/gkn496
  25. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7.
  26. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol 2012;129:1204-8. https://doi.org/10.1016/j.jaci.2012.03.010
  27. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008;134:577-94. https://doi.org/10.1053/j.gastro.2007.11.059
  28. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-5. https://doi.org/10.1073/pnas.1002601107
  29. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4578-85. https://doi.org/10.1073/pnas.1000081107
  30. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula- fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30:61-7. https://doi.org/10.1097/00005176-200001000-00019
  31. Kozyrskyj AL, Ernst P, Becker AB. Increased risk of childhood asthma from antibiotic use in early life. Chest 2007;131:1753-9. https://doi.org/10.1378/chest.06-3008
  32. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic- driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-7. https://doi.org/10.1038/embor.2012.32
  33. Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011;60:49-54. https://doi.org/10.1136/gut.2010.219683
  34. Lee S, Sung J, Lee J, Ko G. Comparison of the gut microbiotas of healthy adult twins living in South Korea and the United States. Appl Environ Microbiol 2011;77: 7433-7. https://doi.org/10.1128/AEM.05490-11
  35. Young VB. The intestinal microbiota in health and disease. Curr Opin Gastroenterol 2012;28:63-9. https://doi.org/10.1097/MOG.0b013e32834d61e9
  36. DuPont AW, DuPont HL. The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 2011;8:523-31. https://doi.org/10.1038/nrgastro.2011.133
  37. Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut 2004;53:1-4. https://doi.org/10.1136/gut.53.1.1
  38. Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 2012;4: 137rv7.
  39. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 2011;13:47-58. https://doi.org/10.1038/nrg3129
  40. McLaughlin SD, Walker AW, Churcher C, Clark SK, Tekkis PP, Johnson MW, et al. The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing. Ann Surg 2010;252:90-8. https://doi.org/10.1097/SLA.0b013e3181e3dc8b
  41. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006;55:205-11. https://doi.org/10.1136/gut.2005.073817
  42. Lepage P, Häsler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011; 141:227-36. https://doi.org/10.1053/j.gastro.2011.04.011
  43. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007;2:119-29. https://doi.org/10.1016/j.chom.2007.06.010
  44. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010;8:292-300. https://doi.org/10.1016/j.chom.2010.08.004
  45. Mai V, Young CM, Ukhanova M, Wang X, Sun Y, Casella G, et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One 2011;6:e20647. https://doi.org/10.1371/journal.pone.0020647
  46. Ramakrishna BS, Mathan VI. Colonic dysfunction in acute diarrhoea: the role of luminal short chain fatty acids. Gut 1993;34:1215-8. https://doi.org/10.1136/gut.34.9.1215
  47. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009;15:1183-9. https://doi.org/10.1002/ibd.20903
  48. Carvalho FA, Koren O, Goodrich JK, Johansson ME, Nalbantoglu I, Aitken JD, et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012;12:139-52. https://doi.org/10.1016/j.chom.2012.07.004
  49. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 2010;86 Suppl 1:13-5.
  50. O Cuiv P, Aguirre de Carcer D, Jones M, Klaassens ES, Worthley DL, Whitehall VL, et al. The effects from DNA extraction methods on the evaluation of microbial diversity associated with human colonic tissue. Microb Ecol 2011;61:353-62. https://doi.org/10.1007/s00248-010-9771-x
  51. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010;156:3216-23. https://doi.org/10.1099/mic.0.040618-0
  52. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4554-61. https://doi.org/10.1073/pnas.1000087107
  53. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ. icrobiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 2011;9:27-38. https://doi.org/10.1038/nrmicro2473
  54. Deshpande G, Rao S, Patole S, Bulsara M. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 2010;125: 921-30. https://doi.org/10.1542/peds.2009-1301
  55. Kale-Pradhan PB, Jassal HK, Wilhelm SM. Role of Lactobacillus in the prevention of antibiotic-associated diarrhea: a meta-analysis. Pharmacotherapy 2010;30: 119-26. https://doi.org/10.1592/phco.30.2.119
  56. Hopkins MJ, Macfarlane GT. Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Appl Environ Microbiol 2003;69:1920-7. https://doi.org/10.1128/AEM.69.4.1920-1927.2003
  57. Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 2013;108:500-8. https://doi.org/10.1038/ajg.2013.59
  58. Kachrimanidou M, Malisiovas N. Clostridium difficile infection: a comprehensive review. Crit Rev Microbiol 2011;37:178-87. https://doi.org/10.3109/1040841X.2011.556598
  59. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al; Fecal Microbiota Transplantation Workgroup. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011;9:1044-9. https://doi.org/10.1016/j.cgh.2011.08.014
  60. Borody TJ, Brandt LJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: a new standard treatment option for Clostridium difficile infection. Expert Rev Anti Infect Ther 2013;11:447-9. https://doi.org/10.1586/eri.13.26
  61. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 2011;9:88-96. https://doi.org/10.1038/nrgastro.2011.244

Cited by

  1. How enteric pathogens know they hit the sweet spot vol.9, pp.1, 2013, https://doi.org/10.2217/fmb.13.141
  2. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD) vol.6, pp.None, 2013, https://doi.org/10.3389/fnagi.2014.00127
  3. The Gastrointestinal Tract Microbiome and Potential Link to Alzheimer’s Disease vol.5, pp.None, 2013, https://doi.org/10.3389/fneur.2014.00043
  4. Comparative Metagenomic Analysis of Human Gut Microbiome Composition Using Two Different Bioinformatic Pipelines vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/325340
  5. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis vol.20, pp.41, 2013, https://doi.org/10.3748/wjg.v20.i41.15163
  6. The microbiome of the upper airways: focus on chronic rhinosinusitis vol.8, pp.None, 2015, https://doi.org/10.1186/s40413-014-0048-6
  7. Linking Smoking, Coffee, Urate, and Parkinson’s Disease - A Role for Gut Microbiota? vol.5, pp.2, 2013, https://doi.org/10.3233/jpd-150557
  8. The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation vol.6, pp.None, 2013, https://doi.org/10.3389/fcimb.2016.00015
  9. Illumina Miseq platform analysis caecum bacterial communities of rex rabbits fed with different antibiotics vol.6, pp.1, 2013, https://doi.org/10.1186/s13568-016-0273-1
  10. Introducing a Novel Media to Improve the Recovery of Culturable Bacteria from the Fish Parasite Anisakis spp. larvae (Nematoda: Anisakidae) vol.74, pp.9, 2013, https://doi.org/10.1007/s00284-017-1281-3
  11. The Microbiota, the Gut and the Brain in Eating and Alcohol Use Disorders: A ‘Ménage à Trois’? vol.52, pp.4, 2013, https://doi.org/10.1093/alcalc/agx024
  12. The Gut Microbiota and Alzheimer’s Disease vol.58, pp.1, 2013, https://doi.org/10.3233/jad-161141
  13. Gut Microbiota in Health and Probiotics in Functional Bowel Disease vol.40, pp.1, 2013, https://doi.org/10.12771/emj.2017.40.1.22
  14. Dysbiosis and Its Discontents vol.8, pp.5, 2017, https://doi.org/10.1128/mbio.01492-17
  15. Airway Microbial Diversity is Inversely Associated with Mite-Sensitized Rhinitis and Asthma in Early Childhood vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-02067-7
  16. Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease vol.55, pp.11, 2013, https://doi.org/10.1007/s12035-018-0983-2
  17. Intestinal Bacterial Flora and Alzheimer’s Disease vol.50, pp.2, 2013, https://doi.org/10.1007/s11062-018-9728-0
  18. Role of Microbiota in Neurodegenerative Diseases vol.49, pp.6, 2013, https://doi.org/10.1134/s1062360418060061
  19. Alterations in the Gut Microbiota of Rats Chronically Exposed to Volatilized Cocaine and Its Active Adulterants Caffeine and Phenacetin vol.35, pp.1, 2013, https://doi.org/10.1007/s12640-018-9936-9
  20. The Healthy Human Blood Microbiome: Fact or Fiction? vol.9, pp.None, 2013, https://doi.org/10.3389/fcimb.2019.00148
  21. Computational Prediction of a New ADMET Endpoint for Small Molecules: Anticommensal Effect on Human Gut Microbiota vol.59, pp.3, 2019, https://doi.org/10.1021/acs.jcim.8b00600
  22. Introduction: The Promise and Challenges of Microbiome-Based Therapies vol.47, pp.4, 2019, https://doi.org/10.1177/1073110519897725
  23. Comparison of Commercial Kits for Recovery and Analysis of Bacterial DNA From Fingerprints vol.65, pp.4, 2020, https://doi.org/10.1111/1556-4029.14280
  24. Metatax: Metataxonomics with a Compi-Based Pipeline for Precision Medicine vol.12, pp.3, 2013, https://doi.org/10.1007/s12539-020-00368-6
  25. Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice vol.21, pp.6, 2013, https://doi.org/10.1007/s10522-020-09895-7
  26. Exploring the Connection between Porphyromonas gingivalis and Neurodegenerative Diseases: A Pilot Quantitative Study on the Bacterium Abundance in Oral Cavity and the Amount of Antibodies in Serum vol.11, pp.6, 2013, https://doi.org/10.3390/biom11060845
  27. GPR40 Agonist Ameliorate Pathological Neuroinflammation of Alzheimer’s Disease via the Modulation of Gut Microbiota and Immune System, a Mini-Review vol.39, pp.6, 2013, https://doi.org/10.1007/s12640-021-00408-z