Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.5.100

iPSC technology-Powerful hand for disease modeling and therapeutic screen  

Kim, Changsung (Department of Bioscience and Biotechnology, Sejong University)
Publication Information
BMB Reports / v.48, no.5, 2015 , pp. 256-265 More about this Journal
Abstract
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]
Keywords
Disease modeling; Drug screen; IPSC; Patient specific therapy; Stem cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Moreno JD and Clancy CE (2012) Pathophysiology of the cardiac late Na current and its potential as a drug target. J Mol Cell Cardiol 52, 608-619   DOI   ScienceOn
2 Carvajal-Vergara X, Sevilla A, D'Souza SL et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808-812   DOI   ScienceOn
3 Lan F, Lee AS, Liang P et al (2013) Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12, 101-113   DOI   ScienceOn
4 Zhang SC, Wernig M, Duncan ID, Brüstle O and Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19, 1129-1133   DOI   ScienceOn
5 Reubinoff BE, Itsykson P, Turetsky T et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19, 1134-1140   DOI   ScienceOn
6 Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M and Studer L. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275-280   DOI   ScienceOn
7 Kondo T, Asai M, Tsukita K et al (2013) Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12, 487-496   DOI   ScienceOn
8 Yagi T, Ito D, Okada Y et al (2011) Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet 20, 4530-4539   DOI   ScienceOn
9 Wang H and Doering LC (2012) Induced pluripotent stem cells to model and treat neurogenetic disorders. Neural Plast 2012, 346053
10 Kaye JA and Finkbeiner S (2013) Modeling Huntington's disease with induced pluripotent stem cells. Mol Cell Neurosci 56, 50-64   DOI   ScienceOn
11 Israel MA, Yuan SH, Bardy C et al (2012) Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482, 216-220   DOI
12 Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225   DOI   ScienceOn
13 Ryan SD, Dolatabadi N, Chan SF et al (2013) Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 155, 1351-1364   DOI   ScienceOn
14 Jeon I, Lee N, Li JY et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington's disease patient-derived induced pluripotent stem cells. Stem Cells 30, 2054-2062   DOI   ScienceOn
15 Zhang K, Yi F, Liu GH and Izpisua Belmonte JC (2012) Huntington's disease: dancing in a dish. Cell Res 22, 1627-1630   DOI
16 Williams EC, Zhong X, Mohamed A et al (2014) Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet 23, 2968-2980   DOI   ScienceOn
17 Jeon I, Choi C, Lee N et al (2014) In Vivo Roles of a Patient-Derived Induced Pluripotent Stem Cell Line (HD72-iPSC) in the YAC128 Model of Huntington's Disease. Int J Stem Cells 7, 43-47   DOI   ScienceOn
18 Yang J, Cai J, Zhang Y et al (2010) Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 285, 40303-40311   DOI   ScienceOn
19 Dajani R, Koo SE, Sullivan GJ and Park IH (2013) Investigation of Rett syndrome using pluripotent stem cells. J Cell Biochem 114, 2446-2453   DOI   ScienceOn
20 Sareen D, Ebert AD, Heins BM, McGivern JV, Ornelas L and Svendsen CN (2012) Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS One 7, e39113   DOI
21 Ananiev G, Williams EC, Li H and Chang Q (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6, e25255   DOI   ScienceOn
22 Schöndorf DC, Aureli M, McAllister FE et al (2014) iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5, 4028
23 Chamberlain SJ, Chen PF, Ng KY et al (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 107, 17668-17673   DOI   ScienceOn
24 Egawa N and Inoue H (2013) [ALS disease modeling and drug screening using patient-specific iPS cells]. Rinsho Shinkeigaku 53, 1020-1022   DOI
25 Corti S, Nizzardo M, Simone C et al (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 4, 165ra162   DOI   ScienceOn
26 Ross CA and Akimov SS (2014) Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 23, R17-26   DOI   ScienceOn
27 Kiskinis E, Sandoe J, Williams LA et al (2014) Pathways Disrupted in Human ALS Motor Neurons Identified through Genetic Correction of Mutant SOD1. Cell Stem Cell 14, 781-795   DOI   ScienceOn
28 Chen H, Qian K, Du Z et al (2014) Modeling ALS with iPSCs Reveals that Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons. Cell Stem Cell 14, 796-809   DOI   ScienceOn
29 Wolstencroft EC, Mattis V, Bajer AA, Young PJ and Lorson CL (2005) A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14, 1199-1210   DOI   ScienceOn
30 Charbord J, Poydenot P, Bonnefond C et al (2013) High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells 31, 1816-1828   DOI
31 Makhortova NR, Hayhurst M and Cerqueira A (2011) A screen for regulators of survival of motor neuron protein levels. Nat Chem Biol 7, 544-552   DOI   ScienceOn
32 Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly -Rosen D and Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J Clin Invest 123, 5371-5388   DOI   ScienceOn
33 Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691-705   DOI   ScienceOn
34 Kim C, Wong J, Wen J et al (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494, 105-110   DOI   ScienceOn
35 Reinhardt P, Schmid B, Burbulla LF et al (2013) Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12, 354-367   DOI   ScienceOn
36 Lopaschuk GD and Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56, 130-140   DOI   ScienceOn
37 Engler AJ, Carag-Krieger C, Johnson CP et al (2008) Embryonic cardiomyocytes beat best on a matrix with heartlike elasticity: scar-like rigidity inhibits beating. J Cell Sci 121, 3794-3802   DOI   ScienceOn
38 Djouadi F, Lecarpentier Y, Hébert JL, Charron P, Bastin J and Coirault C (2009) A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res 84, 83-90   DOI   ScienceOn
39 Choi SM, Kim Y, Shim JS et al (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57, 2458-2468   DOI   ScienceOn
40 Eroshenko N, Ramachandran R, Yadavalli VK and Rao RR (2013) Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng 7, 7   DOI   ScienceOn
41 Galie PA, Khalid N, Carnahan KE, Westfall MV and Stegemann JP (2013) Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol 22, 219-227   DOI   ScienceOn
42 Hidvegi T, Ewing M, Hale P et al (2010) An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229-232   DOI   ScienceOn
43 Yang YM, Gupta SK, Kim KJ et al (2013) A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12, 713-726   DOI   ScienceOn
44 Fermini B and Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2, 439-447   DOI   ScienceOn
45 Liang P, Lan F, Lee AS et al (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677-1691   DOI   ScienceOn
46 Zeevi-Levin N, Itskovitz-Eldor J and Binah O (2012) Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacol Ther 134, 180-188   DOI   ScienceOn
47 Knollmann BC (2013) Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model? Circ Res 112, 969-976; discussion 976   DOI   ScienceOn
48 De Bruin ML, Pettersson M, Meyboom RH, Hoes AW and Leufkens HG (2005) Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death. Eur Heart J 26, 590-597   DOI   ScienceOn
49 Grant AO (2009) Cardiac ion channels. Circ Arrhythm Electrophysiol 2, 185-194   DOI   ScienceOn
50 Musunuru K (2013) Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech 6, 896-904   DOI   ScienceOn
51 Kim H and Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15, 321-334   DOI   ScienceOn
52 Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH and Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10, 977-979   DOI   ScienceOn
53 Qiang L, Fujita R and Abeliovich A (2013) Remodeling neurodegeneration: somatic cell reprogramming-based models of adult neurological disorders. Neuron 78, 957-969   DOI   ScienceOn
54 Wada R, Muraoka N, Inagawa K et al (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A 110, 12667-12672   DOI   ScienceOn
55 Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 8, 959-968   DOI   ScienceOn
56 Fu JD, Stone NR, Liu L et al (2013) Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Reports 1, 235-247   DOI   ScienceOn
57 Cerrone M, Lin X, Zhang M et al (2014) Missense mutations in plakophilin-2 cause sodium current deficit and associate with a brugada syndrome phenotype. Circulation 129, 1092-1103   DOI   ScienceOn
58 Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110, 3507-3512   DOI   ScienceOn
59 Rajamohan D, Matsa E, Kalra S et al (2013) Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays 35, 281-298   DOI   ScienceOn
60 Rubin LL and Haston KM (2011) Stem cell biology and drug discovery. BMC Biol 9, 42   DOI
61 Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134, 877-886   DOI   ScienceOn
62 Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872   DOI   ScienceOn
63 Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676   DOI   ScienceOn
64 Ban H, Nishishita N, Fusaki N et al (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108, 14234-14239   DOI   ScienceOn
65 Kim C (2014) Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 49, 7-14   DOI   ScienceOn
66 Mercola M, Ruiz-Lozano P, Schneider MD (2011) Cardiac muscle regeneration: lessons from development. Genes Dev 25, 299-309   DOI   ScienceOn
67 Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524-528   DOI   ScienceOn
68 Nascone N and Mercola M (1995) An inductive role for the endoderm in Xenopus cardiogenesis. Development 121, 515-523
69 Filipczyk AA, Passier R, Rochat A et al (2007) Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 64, 704-718   DOI
70 Kim C, Majdi M, Xia P et al (2010) Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev 19, 783-795   DOI   ScienceOn
71 Lian X, Hsiao C, Wilson G et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109, E1848-1857   DOI   ScienceOn
72 Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363, 1397-1409   DOI   ScienceOn
73 Itzhaki I, Maizels L, Huber I et al (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225-229   DOI   ScienceOn
74 Yazawa M, Hsueh B, Jia X et al (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230-234   DOI   ScienceOn
75 Ruan Y, Liu N, Napolitano C and Priori SG (2008) Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circ Arrhythm Electrophysiol 1, 290-297   DOI   ScienceOn
76 Terrenoire C, Wang K, Tung KW et al (2013) Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol 141, 61-72   DOI
77 Tabar V and Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15, 82-92   DOI   ScienceOn
78 Höing S, Rudhard Y, Reinhardt P et al (2012) Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell 11, 620-632   DOI   ScienceOn