• Title/Summary/Keyword: Peroxiredoxin 2

Search Result 66, Processing Time 0.026 seconds

Phosphoproteomic Analysis of the Brain of Ovariectomized Adult Rat

  • Santos, Ilyn Lyzette;Kim, Kil-Soo;Kim, Jong-Sang;Lim, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • Aging in females is associated with a reduced metabolic function, increased incidence of neurodegenerative diseases, and cognitive dysfunction, as a result of loss in gonadal function. The change can alter the states of phosphorylation on the proteins, which cause dramatic changes in the cellular location or activity of the proteins. In this study, the differential phosphorylation of the proteins responsible for the functions related to cognition was studied using the ovariectomized adult rats. Phosphoproteomic analysis using the cerebral and hippocampal tissues could identify 51 differentially phosphorylated proteins including 12 proteins for energy metabolism, 8 cytoskeletal proteins, 6 signaling proteins, and other functional proteins in the ovariectomized rats. Further, anti-oxidative enzymes, superoxide dismutase and peroxiredoxin-2, which are known to be inactivated by phosphorylation, were found to be differentially phosphorylated in the cerebellum and hippocampus of the ovariectomized rats, respectively. Many of the deactivated proteins by differential phosphorylation identified in this study were overlapped to those of Alzheimer's disease cases. These results will provide information for neurodegenerative learning and memory impairments in women as brought about by menopause.

RIP3-Dependent Accumulation of Mitochondrial Superoxide Anions in TNF-α-Induced Necroptosis

  • Lee, Jiyoung;Lee, Sunmi;Min, Seongchun;Kang, Sang Won
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.193-201
    • /
    • 2022
  • Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.

Molecular identification and expression analysis of a natural killer enhancing factor-A from black rockfish Sebastes schlegelii

  • Lee, Jeong-Ho;Kim, Joo-Won;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 2009
  • Natural-killer-cell-enhancing factor (NKEF) belongs to the newly defined peroxiredoxin (Prx) family. It was originally isolated from human erythroid cells. The black rockfish NKEF cDNA was identified through the expressed sequence tag (EST) analysis of PBLs libraries. The full-length NKEF cDNA was 1433 bp long and contained an open reading frame (ORF) of 594 bp that encoded 198 amino-acid residues. The 5' UTR had a length of 39 bp, and the 3’UTR 800 bp. The deduced amino-acid sequence of the black rockfish had a density 93.4, 92.9, 87.8, 85.8, 84.8, 83.8, 80.3, 79.7, 77.2, and 75.2% that of the pufferfish, olive flounder, channel catfish, zebrafish, chicken, common carp, Myotis lucifugus, cattle, human PrxI, rat PrxI, human NKEF-A, and Xenopus tropicalis, respectively. The NKEF gene was expressed in all the tissues of the black rockfish. The RT-PCR indicated that the NKEF transcripts were predominantly in the spleen and gill, less dominantly in the PBLs, head kidney, trunk kidney, and liver, and least in the intestine and muscles. This is the first report on the existence of the NKEF-A gene in black rockfish.

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.

Differential responses of peroxidases in sweetpotato suspension-cultured cells to cadmium treatment

  • Ju Hwan Kim;Ki Jung Nam;Kang-Lok Lee;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.76-81
    • /
    • 2023
  • As cultured plant cells can grow in high oxidative stress conditions, they form an excellent system to study antioxidant mechanisms and the mass production of antioxidants. Oxidative stress is a major cause of damage in plants exposed to various types of environmental stress, including heavy metals, such as cadmium (Cd). Heavy metal accumulation can interfere with many cell functions and plant growth. To evaluate the contribution of oxidative stress to Cd-induced toxicity, cultured sweetpotato (Ipomoea batatas) cells were treated with increasing concentrations of Cd (0, 10, 25, and 50 μM) and cultured further. Cell growth was significantly inhibited by 25 and 50 μM of Cd, and the total protein content increased with 50 μM of Cd. Additionally, the activity of peroxidase (POD) and ascorbate peroxidase (APX), antioxidant enzymes that remove hydrogen peroxide (a reactive oxygen species), increased in the cells after treatment with 50 μM of Cd. The expression analysis of POD, APX, and peroxiredoxin (PRX) isolated from sweetpotato cultured cells in a previous study revealed the differential expression of POD in response to Cd. In this study, the expression levels of several acidic POD (swpa2, swpa3, and swpa4) and basal POD (swpb1, swpb2, and swpb3) genes were increased in Cd-treated cultured cells. These results indicate that Cd-mediated oxidative stress is closely linked to improved POD-mediated antioxidant defense capacity in sweetpotato suspension-cultured cells.

The Chemopreventive Effects of Antioxidant Enzyme (항산화효소의 암 예방 효과 및 발암 억제 기전)

  • Jung Hwa-Jin;Choi Yoon-Joo;Won Chang-Won;Seo Young-Rok
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.2
    • /
    • pp.45-47
    • /
    • 2006
  • The reactive oxygen species (ROS) caused the damage of macro molecules, many degenerative disease and cancer, which was produced in process of the aerotropic metabolic pathway as well as in response to the various genotoxic stresses. Recently, redox systems including the number of antioxidant proteins such as catalase, glutathione peroxidase, heam-containing peroxidase, peroxiredoxin and superoxide dismutase (SOD) has been reported to have chemopreventive effects. Antioxidant proteins has been known to have the activity directly removing ROS and affecting the protein-protein interaction and cell signaling to induce the cellular responses. We need to understand the mechanism of antioxidants prevent DNA damage from oxidative stresses for researching the cancer prevention and providing the development of cancer therapeutic drug.

  • PDF

Toxic Levels of Amyloid Beta Peptide Do Not Induce VEGF Synthesis

  • Park, Sun-Young;Chae, Chi-Bom
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.69-75
    • /
    • 2007
  • Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide ($A{\beta}$) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing $H_2O_2$. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and $H_2O_2$ is one of the factors that induce VEGF. Therefore, we tested whether $A{\beta}$ might be responsible for the increased VEGF synthesis. We found that $A{\beta}$ induced the production of $H_2O_2$ in vitro. Comparison of the amount of $H_2O_2$ required to induce VEGF synthesis in HN33 cells and the amount of $H_2O_2$ produced by $10{\mu}M\;A{\beta}_{1-42}$ in vitro suggested that a toxic concentration of $A{\beta}$ might induce VEGF synthesis in these cells. However, toxic concentrations of $A{\beta}$ failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. $Cu^{2+}$, $Zn^{2+}$ and $Fe^{3+}$ are known to accumulate in the brains of AD patients and promote aggregation of $A{\beta}$, and $Cu^{2+}$ by itself induces synthesis of VEGF. However, there was no synergistic effect between $Cu^{2+}$ and $A{\beta}_{1-42}$ in the induction of VEGF synthesis and $Zn^{2+}$ and $Fe^{3+}$ also had no effect on the synthesis of VEGF, alone or in combination with $A{\beta}$.

Cloned Placenta of Korean Native Calves Died Suddenly at Two Months after Birth Displays Differential Protein Expression

  • Kim Hong Rye;Kang Jae Ku;Lee Hye Ran;Yoon Jong Taek;Seong Hwan Hoo;Jung Jin Kwan;Park Chang Sik;Jin Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Cloned calves derived from somatic cell nuclear transfer (SCNT) have been frequently lost by sudden death at 1 to 3 month following healthy birth. To address whether placental anomalies are responsible for the sudden death of cloned calves, we compared protein patterns of 2 placentae derived from SCNT of Korean Native calves died suddenly at two months after birth and those of 2 normal placentae obtained from AI fetuses. Placental proteins were separated using 2-Dimensional gel electrophoresis. Approximately 800 spots were detected in placental 2-D gel stained with coomassie-blue. Then, image analysis of Malanie III (Swiss Institute for Bioinformatics) was performed to detect variations in protein spots between normal and SCNT placentae. In the comparison of normal and SCNT samples, 8 spots were identified to be up-regulated proteins and 24 spots to be down-regulated proteins in SCNT placentae, among which proteins were high mobility group protein HMG1, apolipoprotein A-1 precursor, bactenecin 1, tropomyosin beta chain, $H^+-transporting$ ATPase, carbonic anhydrase II, peroxiredoxin 2, tyrosine-rich acidic matrix protein, serum albumin precursor and cathepsin D. These results suggested that the sudden death of cloned calves might be related to abnormal protein expression in placenta.

Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil

  • Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and $H_2O_2$ contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS ($H_2O_2$) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.

Proteomic Analysis of Differentially Expressed Proteins in Bovine Endometrium with Endometritis

  • Choe, Chang-Yong;Park, Jeong-Won;Kim, Eun-Suk;Lee, Sung-Gyu;Park, Sun-Young;Lee, Jeong-Soon;Cho, Myung-Je;Kang, Kee-Ryeon;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.205-212
    • /
    • 2010
  • Endometritis is one of the primary reasons for reproductive failure. In order to investigate endometritis-associated marker proteins, proteomic analysis was performed on bovine endometrium with endometritis. In bovine endometritis, desmin, $\alpha$-actin-2, heat-shock protein (HSP) 27, peroxiredoxin-6, luteinizing hormone receptor isoform 1, collectin-43 precursor, deoxyribonuclease-I (DNase-I), and MHC class I heavy chain (MHC-Ih) were up-regulated. In contrast, transferrin, interleukin-2 precursor, hemoglobin $\beta$ subunit, and potassium channel tetramerisation domaincontaining 11 (KCTD11) were down-regulated in comparison to normal endometrium. The proteomic results were validated by semiquantitative-PCR and immunoblot analysis. The mRNA levels of desmin, transferrin, $\alpha$-actin-2, HSP27, KCTD11, and MHC-Ih were up-regulated by over 1.5-fold, and showed a pattern similar to their proteomic profiles. Desmin and $\alpha$-actin-2 protein showed positive correlations between proteomic analysis and immunoblot analysis. These results suggest that desmin and $\alpha$-actin-2 may play important roles in endometritis-related function, and could be useful markers for the diagnosis of bovine endometritis.