Toxic Levels of Amyloid Beta Peptide Do Not Induce VEGF Synthesis

  • Park, Sun-Young (Department of Life Science, Pohang University of Science and Technology) ;
  • Chae, Chi-Bom (Department of Life Science, Pohang University of Science and Technology)
  • Received : 2007.01.10
  • Accepted : 2007.04.27
  • Published : 2007.08.31

Abstract

Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide ($A{\beta}$) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing $H_2O_2$. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and $H_2O_2$ is one of the factors that induce VEGF. Therefore, we tested whether $A{\beta}$ might be responsible for the increased VEGF synthesis. We found that $A{\beta}$ induced the production of $H_2O_2$ in vitro. Comparison of the amount of $H_2O_2$ required to induce VEGF synthesis in HN33 cells and the amount of $H_2O_2$ produced by $10{\mu}M\;A{\beta}_{1-42}$ in vitro suggested that a toxic concentration of $A{\beta}$ might induce VEGF synthesis in these cells. However, toxic concentrations of $A{\beta}$ failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. $Cu^{2+}$, $Zn^{2+}$ and $Fe^{3+}$ are known to accumulate in the brains of AD patients and promote aggregation of $A{\beta}$, and $Cu^{2+}$ by itself induces synthesis of VEGF. However, there was no synergistic effect between $Cu^{2+}$ and $A{\beta}_{1-42}$ in the induction of VEGF synthesis and $Zn^{2+}$ and $Fe^{3+}$ also had no effect on the synthesis of VEGF, alone or in combination with $A{\beta}$.

Keywords

Acknowledgement

Supported by : Posco, Konkuk University

References

  1. Asano-Kato, N., Fukagawa, K., Okada, N., Kawakita, T., Takano, Y., et al. (2005) TGF-beta1, IL-1beta, and Th2 cytokines stimulate vascular endothelial growth factor production from conjunctival fibroblasts. Exp. Eye Res. 80, 555-560 https://doi.org/10.1016/j.exer.2004.11.006
  2. Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., et al. (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817-12826 https://doi.org/10.1074/jbc.273.21.12817
  3. Atwood, C. S., Scarpa, R. C., Huang, X., Moir, R. D., Jones, W. D., et al. (2000) Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 75, 1219-1233 https://doi.org/10.1046/j.1471-4159.2000.0751219.x
  4. Barnham, K. J., Haeffner, F., Ciccotosto, G. D., Curtain, C. C., Tew, D., et al. (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta-amyloid. FASEB J. 18, 1427-1429 https://doi.org/10.1096/fj.04-1890fje
  5. Chua, C. C., Hamdy, R. C., and Chua, B. H. (1998) Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic. Biol. Med. 25, 891-897 https://doi.org/10.1016/S0891-5849(98)00115-4
  6. Curtain, C. C., Ali, F., Volitakis, I., Cherny, R. A., Norton, R. S., et al. (2001) Alzheimer's disease amyloid-beta binds copper and zinc to generate an allosterically ordered membranepenetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466-20473 https://doi.org/10.1074/jbc.M100175200
  7. de la Torre, J. C. (2004) Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 3, 184-190 https://doi.org/10.1016/S1474-4422(04)00683-0
  8. Ferrara, N., Gerber, H. P., and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 9, 669-676
  9. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., et al. (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270-3274
  10. Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., et al. (1999a) The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609-7616 https://doi.org/10.1021/bi990438f
  11. Huang, X., Cuajungco, M. P., Atwood, C. S., Hartshorn, M. A., Tyndall, J. D., et al. (1999b) Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 37111-37116 https://doi.org/10.1074/jbc.274.52.37111
  12. Hyman, B. T., Marzloff, K., and Arriagada, P. V. (1993) The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. J. Neuropathol. Exp. Neurol. 52, 594-600 https://doi.org/10.1097/00005072-199311000-00006
  13. Inoue, K., Masuko-Hongo, K., Okamoto, M., and Nishioka, K. (2005) Induction of vascular endothelial growth factor and matrix metalloproteinase-3 (stromelysin) by interleukin-1 in human articular chondrocytes and synoviocytes. Rheumatol. Int. 26, 93-98 https://doi.org/10.1007/s00296-004-0513-6
  14. Jin, K. L., Mao, X. O., and Greenberg, D. A. (2000a) Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J. Mol. Neurosci. 14, 197-203 https://doi.org/10.1385/JMN:14:3:197
  15. Jin, K. L., Mao, X. O., and Greenberg, D. A. (2000b) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA 97, 10242-10247
  16. Kalaria, R. N., Cohen, D. L., Premkumar, D. R., Nag, S., La- Manna, J. C., et al. (1998) Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62, 101-105 https://doi.org/10.1016/S0169-328X(98)00190-9
  17. Kosmidou, I., Xagorari, A., Roussos, C., and Papapetropoulos, A. (2001) Reactive oxygen species stimulate VEGF production from C(2)C(12) skeletal myotubes through a PI3K/Akt pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L585-592
  18. Kuroki, M., Voest, E. E., Amano, S., Beerepoot, L. V., Takashima, S., et al. (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest. 98, 1667-1675 https://doi.org/10.1172/JCI118962
  19. Lee, H. J., Hammond, D. N., Large, T. H., Roback, J. D., Sim, J. A., et al. (1990) Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice. J. Neurosci. 10, 1779-1787 https://doi.org/10.1523/JNEUROSCI.10-06-01779.1990
  20. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., and Markesbery, W. R. (1998) Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47-52 https://doi.org/10.1016/S0022-510X(98)00092-6
  21. Martin, F., Linden, T., Katschinski, D. M., Oehme, F., Flamme, I., et al. (2005) Copper-dependent activation of hypoxiainducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105, 4613-4619 https://doi.org/10.1182/blood-2004-10-3980
  22. Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., et al. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757-2763
  23. Murata, M., Yudoh, K., Nakamura, H., Kato, T., Inoue, K., et al. (2006) Distinct signaling pathways are involved in hypoxiaand IL-1-induced VEGF expression in human articular chondrocytes. J. Orthop. Res. 24, 1544-1554 https://doi.org/10.1002/jor.20168
  24. Nan, B., Lin, P., Lumsden, A. B., Yao, Q., and Chen, C. (2005) Effects of TNF-alpha and curcumin on the expression of thrombomodulin and endothelial protein C receptor in human endothelial cells. Thromb. Res. 115, 417-426 https://doi.org/10.1016/j.thromres.2004.10.010
  25. Opazo, C., Barria, M. I., Ruiz, F. H., and Inestrosa, N. C. (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16, 91-98 https://doi.org/10.1023/A:1020795422185
  26. Opazo, C., Huang, X., Cherny, R. A., Moir, R. D., Roher, A. E., et al. (2002) Metalloenzyme-like activity of Alzheimer's disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J. Biol. Chem. 277, 40302-40308 https://doi.org/10.1074/jbc.M206428200
  27. Parihar, M. S. and Hemnani, T. (2004) Alzheimer's disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 11, 456-467 https://doi.org/10.1016/j.jocn.2003.12.007
  28. Selkoe, D. J. (1991) The molecular pathology of Alzheimer's disease. Neuron 6, 487-498 https://doi.org/10.1016/0896-6273(91)90052-2
  29. Sen, C. K., Khanna, S., Venojarvi, M., Trikha, P., Ellison, E. C., et al. (2002) Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 282, H1821-1827
  30. Sinor, A. D., Irvin, S. M., Cobbs, C. S., Chen, J., Graham, S. H., et al. (1998) Hypoxic induction of vascular endothelial growth factor (VEGF) protein in astroglial cultures. Brain Res. 812, 289-291 https://doi.org/10.1016/S0006-8993(98)00976-7
  31. Smith, M. A., Harris, P. L., Sayre, L. M., and Perry, G. (1997) Iron accumulation in Alzheimer disease is a source of redoxgenerated free radicals. Proc. Natl. Acad. Sci. USA 94, 9866-9868
  32. Storkebaum, E. and Carmeliet, P. (2004) VEGF: a critical player in neurodegeneration. J. Clin. Invest. 113, 14-18 https://doi.org/10.1172/JCI20682
  33. Stuerenburg, H. J. (2000) CSF copper concentrations, bloodbrain barrier function, and coeruloplasmin synthesis during the treatment of Wilson's disease. J. Neural. Transm. 107, 321-329 https://doi.org/10.1007/s007020050026
  34. Tarkowski, E., Issa, R., Sjogren, M., Wallin, A., Blennow, K., et al. (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging 23, 237-243 https://doi.org/10.1016/S0197-4580(01)00285-8
  35. Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D. B. (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61, 1965-1968 https://doi.org/10.1111/j.1471-4159.1993.tb09841.x
  36. Yang, S. P., Bae, D. G., Kang, H. J., Gwag, B. J., Gho, Y. S., et al. (2004) Co-accumulation of Vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer's disease. Neurobiol. Aging 25, 283-290 https://doi.org/10.1016/S0197-4580(03)00111-8
  37. Yang, S. P., Kwon, B. O., Gho, Y. S., and Chae, C. B. (2005) Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. J. Neurochem. 93, 118-127 https://doi.org/10.1111/j.1471-4159.2004.02993.x
  38. Zhu, J. W., Yu, B. M., Ji, Y. B., Zheng, M. H., and Li, D. H. (2002) Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer. World J. Gastroenterol. 8, 153-157 https://doi.org/10.3748/wjg.v8.i1.153