Browse > Article

Toxic Levels of Amyloid Beta Peptide Do Not Induce VEGF Synthesis  

Park, Sun-Young (Department of Life Science, Pohang University of Science and Technology)
Chae, Chi-Bom (Department of Life Science, Pohang University of Science and Technology)
Abstract
Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide ($A{\beta}$) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing $H_2O_2$. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and $H_2O_2$ is one of the factors that induce VEGF. Therefore, we tested whether $A{\beta}$ might be responsible for the increased VEGF synthesis. We found that $A{\beta}$ induced the production of $H_2O_2$ in vitro. Comparison of the amount of $H_2O_2$ required to induce VEGF synthesis in HN33 cells and the amount of $H_2O_2$ produced by $10{\mu}M\;A{\beta}_{1-42}$ in vitro suggested that a toxic concentration of $A{\beta}$ might induce VEGF synthesis in these cells. However, toxic concentrations of $A{\beta}$ failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. $Cu^{2+}$, $Zn^{2+}$ and $Fe^{3+}$ are known to accumulate in the brains of AD patients and promote aggregation of $A{\beta}$, and $Cu^{2+}$ by itself induces synthesis of VEGF. However, there was no synergistic effect between $Cu^{2+}$ and $A{\beta}_{1-42}$ in the induction of VEGF synthesis and $Zn^{2+}$ and $Fe^{3+}$ also had no effect on the synthesis of VEGF, alone or in combination with $A{\beta}$.
Keywords
Alzheimer's Disease; Amyloid-$\beta$; $Cu^{2+}$; $H_2O_2$; HN33; VEGF;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., et al. (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817-12826   DOI   ScienceOn
2 Curtain, C. C., Ali, F., Volitakis, I., Cherny, R. A., Norton, R. S., et al. (2001) Alzheimer's disease amyloid-beta binds copper and zinc to generate an allosterically ordered membranepenetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466-20473   DOI   ScienceOn
3 de la Torre, J. C. (2004) Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 3, 184-190   DOI   ScienceOn
4 Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., et al. (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270-3274
5 Inoue, K., Masuko-Hongo, K., Okamoto, M., and Nishioka, K. (2005) Induction of vascular endothelial growth factor and matrix metalloproteinase-3 (stromelysin) by interleukin-1 in human articular chondrocytes and synoviocytes. Rheumatol. Int. 26, 93-98   DOI   ScienceOn
6 Martin, F., Linden, T., Katschinski, D. M., Oehme, F., Flamme, I., et al. (2005) Copper-dependent activation of hypoxiainducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105, 4613-4619   DOI   ScienceOn
7 Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., et al. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757-2763
8 Storkebaum, E. and Carmeliet, P. (2004) VEGF: a critical player in neurodegeneration. J. Clin. Invest. 113, 14-18   DOI
9 Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D. B. (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61, 1965-1968   DOI   ScienceOn
10 Kuroki, M., Voest, E. E., Amano, S., Beerepoot, L. V., Takashima, S., et al. (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest. 98, 1667-1675   DOI   ScienceOn
11 Stuerenburg, H. J. (2000) CSF copper concentrations, bloodbrain barrier function, and coeruloplasmin synthesis during the treatment of Wilson's disease. J. Neural. Transm. 107, 321-329   DOI
12 Nan, B., Lin, P., Lumsden, A. B., Yao, Q., and Chen, C. (2005) Effects of TNF-alpha and curcumin on the expression of thrombomodulin and endothelial protein C receptor in human endothelial cells. Thromb. Res. 115, 417-426   DOI   ScienceOn
13 Tarkowski, E., Issa, R., Sjogren, M., Wallin, A., Blennow, K., et al. (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging 23, 237-243   DOI   ScienceOn
14 Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., and Markesbery, W. R. (1998) Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47-52   DOI   ScienceOn
15 Opazo, C., Huang, X., Cherny, R. A., Moir, R. D., Roher, A. E., et al. (2002) Metalloenzyme-like activity of Alzheimer's disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J. Biol. Chem. 277, 40302-40308   DOI   ScienceOn
16 Kosmidou, I., Xagorari, A., Roussos, C., and Papapetropoulos, A. (2001) Reactive oxygen species stimulate VEGF production from C(2)C(12) skeletal myotubes through a PI3K/Akt pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L585-592
17 Yang, S. P., Bae, D. G., Kang, H. J., Gwag, B. J., Gho, Y. S., et al. (2004) Co-accumulation of Vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer's disease. Neurobiol. Aging 25, 283-290   DOI   ScienceOn
18 Jin, K. L., Mao, X. O., and Greenberg, D. A. (2000b) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA 97, 10242-10247
19 Parihar, M. S. and Hemnani, T. (2004) Alzheimer's disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 11, 456-467   DOI   ScienceOn
20 Sinor, A. D., Irvin, S. M., Cobbs, C. S., Chen, J., Graham, S. H., et al. (1998) Hypoxic induction of vascular endothelial growth factor (VEGF) protein in astroglial cultures. Brain Res. 812, 289-291   DOI
21 Yang, S. P., Kwon, B. O., Gho, Y. S., and Chae, C. B. (2005) Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. J. Neurochem. 93, 118-127   DOI   ScienceOn
22 Jin, K. L., Mao, X. O., and Greenberg, D. A. (2000a) Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J. Mol. Neurosci. 14, 197-203   DOI   ScienceOn
23 Kalaria, R. N., Cohen, D. L., Premkumar, D. R., Nag, S., La- Manna, J. C., et al. (1998) Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62, 101-105   DOI
24 Zhu, J. W., Yu, B. M., Ji, Y. B., Zheng, M. H., and Li, D. H. (2002) Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer. World J. Gastroenterol. 8, 153-157   DOI
25 Lee, H. J., Hammond, D. N., Large, T. H., Roback, J. D., Sim, J. A., et al. (1990) Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice. J. Neurosci. 10, 1779-1787   DOI
26 Asano-Kato, N., Fukagawa, K., Okada, N., Kawakita, T., Takano, Y., et al. (2005) TGF-beta1, IL-1beta, and Th2 cytokines stimulate vascular endothelial growth factor production from conjunctival fibroblasts. Exp. Eye Res. 80, 555-560   DOI   ScienceOn
27 Ferrara, N., Gerber, H. P., and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 9, 669-676
28 Huang, X., Cuajungco, M. P., Atwood, C. S., Hartshorn, M. A., Tyndall, J. D., et al. (1999b) Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 37111-37116   DOI   ScienceOn
29 Barnham, K. J., Haeffner, F., Ciccotosto, G. D., Curtain, C. C., Tew, D., et al. (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta-amyloid. FASEB J. 18, 1427-1429   DOI
30 Smith, M. A., Harris, P. L., Sayre, L. M., and Perry, G. (1997) Iron accumulation in Alzheimer disease is a source of redoxgenerated free radicals. Proc. Natl. Acad. Sci. USA 94, 9866-9868
31 Sen, C. K., Khanna, S., Venojarvi, M., Trikha, P., Ellison, E. C., et al. (2002) Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 282, H1821-1827
32 Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., et al. (1999a) The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609-7616   DOI   ScienceOn
33 Chua, C. C., Hamdy, R. C., and Chua, B. H. (1998) Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic. Biol. Med. 25, 891-897   DOI   ScienceOn
34 Murata, M., Yudoh, K., Nakamura, H., Kato, T., Inoue, K., et al. (2006) Distinct signaling pathways are involved in hypoxiaand IL-1-induced VEGF expression in human articular chondrocytes. J. Orthop. Res. 24, 1544-1554   DOI   ScienceOn
35 Atwood, C. S., Scarpa, R. C., Huang, X., Moir, R. D., Jones, W. D., et al. (2000) Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 75, 1219-1233   DOI   ScienceOn
36 Hyman, B. T., Marzloff, K., and Arriagada, P. V. (1993) The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. J. Neuropathol. Exp. Neurol. 52, 594-600   DOI   ScienceOn
37 Opazo, C., Barria, M. I., Ruiz, F. H., and Inestrosa, N. C. (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16, 91-98   DOI   ScienceOn
38 Selkoe, D. J. (1991) The molecular pathology of Alzheimer's disease. Neuron 6, 487-498   DOI   ScienceOn