Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0260

RIP3-Dependent Accumulation of Mitochondrial Superoxide Anions in TNF-α-Induced Necroptosis  

Lee, Jiyoung (Department of Life Science, College of Natural Science, Ewha Womans University)
Lee, Sunmi (Department of Life Science, College of Natural Science, Ewha Womans University)
Min, Seongchun (Department of Life Science, College of Natural Science, Ewha Womans University)
Kang, Sang Won (Department of Life Science, College of Natural Science, Ewha Womans University)
Abstract
Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.
Keywords
NADPH oxidase; necroptosis; superoxide anion; tumor necrosis factor-${\alpha}$;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Weinlich, R., Oberst, A., Beere, H.M., and Green, D.R. (2017). Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127-136.   DOI
2 Stein, L.R. and Imai, S. (2012). The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420-428.   DOI
3 Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P., and Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Res. 29, 347-364.   DOI
4 Blaser, H., Dostert, C., Mak, T.W., and Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends Cell Biol. 26, 249-261.   DOI
5 Lee, S., Lee, E.K., Kang, D.H., Lee, J., Hong, S.H., Jeong, W., and Kang, S.W. (2021). Glutathione peroxidase-1 regulates ASK1-dependent apoptosis via interaction with TRAF2 in RIPK3-negative cancer cells. Exp. Mol. Med. 53, 1080-1091.   DOI
6 Wang, Y., Branicky, R., Noe, A., and Hekimi, S. (2018). Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915-1928.   DOI
7 Yang, Z., Wang, Y., Zhang, Y., He, X., Zhong, C.Q., Ni, H., Chen, X., Liang, Y., Wu, J., Zhao, S., et al. (2018). RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat. Cell Biol. 20, 186-197.   DOI
8 Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., and Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336.   DOI
9 Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., and Liu, Z.G. (2012). Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl. Acad. Sci. U. S. A. 109, 5322-5327.   DOI
10 Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281-286.   DOI
11 Block, K., Gorin, Y., and Abboud, H.E. (2009). Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl. Acad. Sci. U. S. A. 106, 14385-14390.   DOI
12 Cha, J.J., Min, H.S., Kim, K.T., Kim, J.E., Ghee, J.Y., Kim, H.W., Lee, J.E., Han, J.Y., Lee, G., Ha, H.J., et al. (2017). APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Invest. 97, 419-431.   DOI
13 Kang, D.H. and Kang, S.W. (2013). Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol. Ther. (Seoul) 21, 89-96.   DOI
14 Cho, Y.S., Challa, S., Moquin, D., Genga, R., Ray, T.D., Guildford, M., and Chan, F.K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123.   DOI
15 Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L., Lewis, W., Harrison, D.G., and Dikalov, S.I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 107, 106-116.   DOI
16 He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100-1111.   DOI
17 Tait, S.W., Oberst, A., Quarato, G., Milasta, S., Haller, M., Wang, R., Karvela, M., Ichim, G., Yatim, N., Albert, M.L., et al. (2013). Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878-885.   DOI
18 Kim, J., Gupta, R., Blanco, L.P., Yang, S., Shteinfer-Kuzmine, A., Wang, K., Zhu, J., Yoon, H.E., Wang, X., Kerkhofs, M., et al. (2019). VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531-1536.   DOI
19 Silke, J., Rickard, J.A., and Gerlic, M. (2015). The diverse role of RIP kinases in necroptosis and inflammation. Nat. Immunol. 16, 689-697.   DOI
20 Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147.   DOI
21 Kim, H.J., Koo, S.Y., Ahn, B.H., Park, O., Park, D.H., Seo, D.O., Won, J.H., Yim, H.J., Kwak, H.S., Park, H.S., et al. (2010). NecroX as a novel class of mitochondrial reactive oxygen species and ONOO- scavenger. Arch. Pharm. Res. 33, 1813-1823.   DOI
22 Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1-14.   DOI
23 Chang, T.S., Cho, C.S., Park, S., Yu, S., Kang, S.W., and Rhee, S.G. (2004). Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279, 41975-41984.   DOI
24 Dixon, S.J. and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17.   DOI
25 Imlay, J.A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755-776.   DOI
26 Joo, J.H., Huh, J.E., Lee, J.H., Park, D.R., Lee, Y., Lee, S.G., Choi, S., Lee, H.J., Song, S.W., Jeong, Y., et al. (2016). A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci. Rep. 6, 22389.   DOI
27 Kim, Y.S., Morgan, M.J., Choksi, S., and Liu, Z.G. (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675-687.   DOI
28 Lee, S., Lee, J.Y., Lee, E.W., Park, S., Kang, D.H., Min, C., Lee, D.J., Kang, D., Song, J., Kwon, J., et al. (2019). Absence of cytosolic 2-Cys Prx subtypes I and II exacerbates TNF-alpha-induced apoptosis via different routes. Cell Rep. 26, 2194-2211.e6.   DOI
29 Morgan, M.J. and Liu, Z.G. (2010). Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol. Cells 30, 1-12.   DOI
30 Seong, D., Jeong, M., Seo, J., Lee, J.Y., Hwang, C.H., Shin, H.C., Shin, J.Y., Nam, Y.W., Jo, J.Y., Lee, H., et al. (2020). Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation. Proc. Natl. Acad. Sci. U. S. A. 117, 19982-19993.   DOI
31 Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278, 47361-47364.   DOI
32 Zhang, Y., Su, S.S., Zhao, S., Yang, Z., Zhong, C.Q., Chen, X., Cai, Q., Yang, Z.H., Huang, D., Wu, R., et al. (2017). RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun. 8, 14329.   DOI