DOI QR코드

DOI QR Code

RIP3-Dependent Accumulation of Mitochondrial Superoxide Anions in TNF-α-Induced Necroptosis

  • Lee, Jiyoung (Department of Life Science, College of Natural Science, Ewha Womans University) ;
  • Lee, Sunmi (Department of Life Science, College of Natural Science, Ewha Womans University) ;
  • Min, Seongchun (Department of Life Science, College of Natural Science, Ewha Womans University) ;
  • Kang, Sang Won (Department of Life Science, College of Natural Science, Ewha Womans University)
  • Received : 2021.11.10
  • Accepted : 2021.12.10
  • Published : 2022.04.30

Abstract

Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.

Keywords

Acknowledgement

We thank Prof. Yun Soo Bae (Ewha Womans University) for sharing APX-115 reagent. This study was supported by grants from the National Research Foundation of Korea (2018R1A2B3006323 and 2017M3A9B6073098). S.M. was also supported by grants from the National Research Foundation of Korea (2019R1I1A1A01057557) and the RP-Grant (2019-2020) of Ewha Womans University.

References

  1. Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281-286. https://doi.org/10.1038/nmeth866
  2. Blaser, H., Dostert, C., Mak, T.W., and Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends Cell Biol. 26, 249-261. https://doi.org/10.1016/j.tcb.2015.12.002
  3. Block, K., Gorin, Y., and Abboud, H.E. (2009). Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl. Acad. Sci. U. S. A. 106, 14385-14390. https://doi.org/10.1073/pnas.0906805106
  4. Cha, J.J., Min, H.S., Kim, K.T., Kim, J.E., Ghee, J.Y., Kim, H.W., Lee, J.E., Han, J.Y., Lee, G., Ha, H.J., et al. (2017). APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Invest. 97, 419-431. https://doi.org/10.1038/labinvest.2017.2
  5. Chang, T.S., Cho, C.S., Park, S., Yu, S., Kang, S.W., and Rhee, S.G. (2004). Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279, 41975-41984. https://doi.org/10.1074/jbc.M407707200
  6. Cho, Y.S., Challa, S., Moquin, D., Genga, R., Ray, T.D., Guildford, M., and Chan, F.K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123. https://doi.org/10.1016/j.cell.2009.05.037
  7. Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L., Lewis, W., Harrison, D.G., and Dikalov, S.I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 107, 106-116. https://doi.org/10.1161/CIRCRESAHA.109.214601
  8. Dixon, S.J. and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17. https://doi.org/10.1038/nchembio.1416
  9. He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100-1111. https://doi.org/10.1016/j.cell.2009.05.021
  10. Imlay, J.A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755-776. https://doi.org/10.1146/annurev.biochem.77.061606.161055
  11. Joo, J.H., Huh, J.E., Lee, J.H., Park, D.R., Lee, Y., Lee, S.G., Choi, S., Lee, H.J., Song, S.W., Jeong, Y., et al. (2016). A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci. Rep. 6, 22389. https://doi.org/10.1038/srep22389
  12. Kang, D.H. and Kang, S.W. (2013). Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol. Ther. (Seoul) 21, 89-96. https://doi.org/10.4062/biomolther.2013.015
  13. Kim, H.J., Koo, S.Y., Ahn, B.H., Park, O., Park, D.H., Seo, D.O., Won, J.H., Yim, H.J., Kwak, H.S., Park, H.S., et al. (2010). NecroX as a novel class of mitochondrial reactive oxygen species and ONOO- scavenger. Arch. Pharm. Res. 33, 1813-1823. https://doi.org/10.1007/s12272-010-1114-4
  14. Kim, J., Gupta, R., Blanco, L.P., Yang, S., Shteinfer-Kuzmine, A., Wang, K., Zhu, J., Yoon, H.E., Wang, X., Kerkhofs, M., et al. (2019). VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531-1536. https://doi.org/10.1126/science.aav4011
  15. Kim, Y.S., Morgan, M.J., Choksi, S., and Liu, Z.G. (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675-687. https://doi.org/10.1016/j.molcel.2007.04.021
  16. Lee, S., Lee, E.K., Kang, D.H., Lee, J., Hong, S.H., Jeong, W., and Kang, S.W. (2021). Glutathione peroxidase-1 regulates ASK1-dependent apoptosis via interaction with TRAF2 in RIPK3-negative cancer cells. Exp. Mol. Med. 53, 1080-1091. https://doi.org/10.1038/s12276-021-00642-7
  17. Lee, S., Lee, J.Y., Lee, E.W., Park, S., Kang, D.H., Min, C., Lee, D.J., Kang, D., Song, J., Kwon, J., et al. (2019). Absence of cytosolic 2-Cys Prx subtypes I and II exacerbates TNF-alpha-induced apoptosis via different routes. Cell Rep. 26, 2194-2211.e6. https://doi.org/10.1016/j.celrep.2019.01.081
  18. Morgan, M.J. and Liu, Z.G. (2010). Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol. Cells 30, 1-12. https://doi.org/10.1007/s10059-010-0105-0
  19. Seong, D., Jeong, M., Seo, J., Lee, J.Y., Hwang, C.H., Shin, H.C., Shin, J.Y., Nam, Y.W., Jo, J.Y., Lee, H., et al. (2020). Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation. Proc. Natl. Acad. Sci. U. S. A. 117, 19982-19993. https://doi.org/10.1073/pnas.2000979117
  20. Silke, J., Rickard, J.A., and Gerlic, M. (2015). The diverse role of RIP kinases in necroptosis and inflammation. Nat. Immunol. 16, 689-697. https://doi.org/10.1038/ni.3206
  21. Stein, L.R. and Imai, S. (2012). The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420-428. https://doi.org/10.1016/j.tem.2012.06.005
  22. Tait, S.W., Oberst, A., Quarato, G., Milasta, S., Haller, M., Wang, R., Karvela, M., Ichim, G., Yatim, N., Albert, M.L., et al. (2013). Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878-885. https://doi.org/10.1016/j.celrep.2013.10.034
  23. Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P., and Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Res. 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5
  24. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147. https://doi.org/10.1038/nrm3737
  25. Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1-14. https://doi.org/10.1016/j.molcel.2007.03.016
  26. Wang, Y., Branicky, R., Noe, A., and Hekimi, S. (2018). Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915-1928. https://doi.org/10.1083/jcb.201708007
  27. Weinlich, R., Oberst, A., Beere, H.M., and Green, D.R. (2017). Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127-136. https://doi.org/10.1038/nrm.2016.149
  28. Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., and Rhee, S.G. (2003). Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278, 47361-47364. https://doi.org/10.1074/jbc.C300428200
  29. Yang, Z., Wang, Y., Zhang, Y., He, X., Zhong, C.Q., Ni, H., Chen, X., Liang, Y., Wu, J., Zhao, S., et al. (2018). RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat. Cell Biol. 20, 186-197. https://doi.org/10.1038/s41556-017-0022-y
  30. Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., and Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. https://doi.org/10.1126/science.1172308
  31. Zhang, Y., Su, S.S., Zhao, S., Yang, Z., Zhong, C.Q., Chen, X., Cai, Q., Yang, Z.H., Huang, D., Wu, R., et al. (2017). RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun. 8, 14329. https://doi.org/10.1038/ncomms14329
  32. Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., and Liu, Z.G. (2012). Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl. Acad. Sci. U. S. A. 109, 5322-5327. https://doi.org/10.1073/pnas.1200012109