• 제목/요약/키워드: Perovskite solar cell

검색결과 65건 처리시간 0.025초

페로브스카이트 태양전지 (Perovskite solar cell)

  • 이진욱;박남규
    • 진공이야기
    • /
    • 제1권4호
    • /
    • pp.10-13
    • /
    • 2014
  • Since the development of 9.7% efficient long-term stable solid state perovskite solar cell in 2012, intensive study on perovskite solar cell has been performed. As a result, power conversion efficiency (PCE) has reached 20.1%. In-dept study on perovskite light absorber enabled understanding of origin of superb photovoltaic performance of perovskite solar cell. In this article, historical evolutions of perovskite solar cell along with key physical properties enabling high PCE are presented. Several important results for development of high efficiency perovskite solar cell are introduced. Finally, in-present research issues and future direction for solving these issues are discussed.

고효율 적층형 태양전지를 위한 유무기 페로브스카이트 (Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells)

  • 박익재;김동회
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

Emergence and Evolution of Organometal Halide Perovskite Solar Cell

  • Park, Nam-Gyu
    • Rapid Communication in Photoscience
    • /
    • 제4권2호
    • /
    • pp.29-30
    • /
    • 2015
  • Since the first report on long-term durable perovskite solar cell in 2012, a surge of interest in perovskite solar cell has been received due to its superb photovoltaic performance exceeding 20%. $MAPbI_3$ ($MA=CH_3NH_3$) perovskite film is able to be prepared simply by solution processesof either sequential two-step or single step procedure. Since $MAPbI_3$ shows balanced charge transport property with micrometer scale charge diffusion length, it can be applied to any kind of junction structures. Mostly studied structure is mesoscopic structure employing mesoporous oxide layer in perovskite film. Photovoltaic performance is primarilyin fluenced by the quality of perovskite film but interfaces are equally important. In this mini review, emergence and evolution of perovskite solar cell are described.

2-Terminal Perovskite/SHJ 탠덤 태양전지 기술 검토 (Review of 2-terminal Perovskite/SHJ Tandem Junction Solar Cell Technology)

  • 장민규;전영우;김민제;이준신;박진주
    • Current Photovoltaic Research
    • /
    • 제10권3호
    • /
    • pp.84-89
    • /
    • 2022
  • c-Si solar cells currently account for more than 90% of the solar energy market. Research on tandem junction solar cells to overcome efficiency limitations is drawing attention at a time when new technologies are being developed to secure the price competitiveness of silicon solar cells. Among several candidate materials for silicon-based tandem solar cells, perovskite has recently been studied as it is suitable for the ease of process as well as for its properties as a tandem solar cell material. In this study, we want to review the research trends and technology limitations of 2-T Perovskite/SHJ tandem junction solar cells.

반투명 페로브스카이트 태양전지용 투명전극 소재 (Transparent Electrodes for Semitransparent Perovskite Solar Cells)

  • 이필립;고민재
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.74-80
    • /
    • 2018
  • Recently, perovskite solar cells have shown tremendous improvement in power conversion efficiencies. Moreover, they have potential in semitransparent solar cell applications due to their high absorption coefficients. In order to fabricate semitransparent perovskite solar cells with good performance, it is essential to consider the suitability of transparent electrode materials in various aspects, such as transparency, conductivity and fabrication process. In this review, candidate materials for transparent electrodes in perovskite solar cells including carbon-based nanomaterials, conductive polymers and metallic nanostructures are discussed.

수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석 (Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis)

  • 송재관;안준섭;한은미
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.81-86
    • /
    • 2020
  • MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

대면적 페로브스카이트 태양전지 제작을 위한 슬롯-다이코팅 방법 (Slot-die Coating Method for Manufacturing Large-area Perovskite Solar Cell)

  • 오주영;하재준;이동근
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.918-925
    • /
    • 2021
  • 페로브스카이트 태양전지는 기존의 실리콘 태양전지를 대체하는 차세대 태양전지로서, 페로브스카이트 구조를 가진 유-무기 하이브리드 물질을 광 활성층으로 사용하는 태양전지 소자로 고효율, 저가의 용액 공정 및 저온 공정에 유리한 장점들을 가지고 있으며 지난 10년간 빠른 효율 향상을 보여주었다. 이러한 페로브스카이트 태양전지의 상용화 과정에서 대면적 코팅 방법에 대해서 연구개발이 진행되어야 한다. 대면적 페로브스카이트 태양전지 대면적 코팅 방법 중 하나로 슬롯-다이 코팅방법에 대해서 연구 진행하였다. 메니스커스를 이용하여 기판 위를 지나가며 용액을 코팅하는 방법으로 3D printer에 메니스커스를 장착하여 코팅을 할 수 있도록 하였다. 코팅 시 작용하는 변수로는 bed 온도, coating speed, N2 blowing간격, N2 blowing 높이, N2 blowing세기등이 있으며 이를 조절하여 페로브스카이트 흡수층을 제작 진행하였으며, 대면적 소자 제작을 위한 코팅 조건을 최적화 하였다.

친환경 페로브스카이트 태양전지 최신 기술 동향 (Recent Research Progress on Eco-Friendly Perovskite Solar Cells)

  • 유형렬;최종민
    • 전기화학회지
    • /
    • 제22권3호
    • /
    • pp.104-111
    • /
    • 2019
  • 금속 할로겐 페로브스카이트 (perovskite)는 우수한 전기적, 광학적 특성으로 인해 차세대 태양전지의 핵심 소재로 큰 주목을 받고 있다. 페로브스카이트 태양전지는 등장 이후 전례 없는 단기간 효율 향상을 보이며 현재 24% 이상의 인증된 광전 변환 효율을 달성하였지만, 대부분의 고성능 페로브스카이트 태양전지는 유독성 납 (Pb)을 기반으로 한 페로브스카이트를 사용한 것으로, 향후 상용화를 위해서는 납을 쓰지 않는 친환경 페로브스카이트 개발이 필수적이다. 본 글에서는 비납 페로브스카이트 물질 및 연구 동향에 대해서 소개하고자 한다.

주석 페로브스카이트 태양전지에 관한 고찰: 재료 및 장치적 특성 (Review on Tin Perovskite Solar Cells: Material and Device Properties)

  • 최다영;임세영;김한결
    • Current Photovoltaic Research
    • /
    • 제11권1호
    • /
    • pp.18-26
    • /
    • 2023
  • Tin perovskite solar cells have attracted a lot of attention due to their potential to address the toxicity of lead, which is the biggest barrier to commercialization of perovskite solar cells. Unlike other lead-free perovskite, tin perovskite have a direct bandgap, which is suitable for use as light harvesting, and relatively good stability, which has led to a lot of attention. Since the first tin perovskite solar cell was reported in 2014, it has achieved an impressive power conversion efficiency of 14.81%. However, this efficiency is still low compared to that of lead perovskite solar cells, and the stability of tin perovskite solar cells is also an issue that needs to be addressed. In this review, we will discuss the basic properties of the tin atom in comparison to the lead atom, and then discuss the crystal structure, phase transition, and basic properties of tin perovskite. We will then discuss the advantages, applications, challenges, and strategies of tin perovskite, In particular, we will focus on how to prevent the oxidation of tin, which is arguably the biggest challenge for using tin perovskite solar cells. At the end, we summarize the key factors that need to be addressed for higher efficiency and stability, emphasizing what is needed to commercialize tin perovskite solar cells.

Diode Equivalent Parameters of Solar Cell

  • Iftiquar, Sk Md;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.107-111
    • /
    • 2015
  • Current characteristic curve of an illuminated solar cell was used to determine its reverse saturation current density ($J_0$), ideality factor (n) and resistances, by using numerical diode simulation. High efficiency amorphous silicon, heterojunction crystalline Si (HIT), plastic and organic-inorganic halide perovskite solar cell shows n=3.27 for a-Si and n=2.14 for improved HIT cell as high and low n respectively, while the perovskite and plastic cells show n=2.56 and 2.57 respectively. The $J_0$ of these cells remain within $7.1{\times}10^{-7}$ and $1.79{\times}10^{-8}A/cm^2$ for poorer HIT and improved perovskite solar cell respectively.