Browse > Article
http://dx.doi.org/10.21218/CPR.2022.10.3.084

Review of 2-terminal Perovskite/SHJ Tandem Junction Solar Cell Technology  

Jang, Minkyu (Department of Energy Convergence, Cheongju University)
Jeon, Youngwoo (Department of Energy Convergence, Cheongju University)
Kim, Minje (Department of Energy Convergence, Cheongju University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Park, Jinjoo (Department of Energy Convergence, Cheongju University)
Publication Information
Current Photovoltaic Research / v.10, no.3, 2022 , pp. 84-89 More about this Journal
Abstract
c-Si solar cells currently account for more than 90% of the solar energy market. Research on tandem junction solar cells to overcome efficiency limitations is drawing attention at a time when new technologies are being developed to secure the price competitiveness of silicon solar cells. Among several candidate materials for silicon-based tandem solar cells, perovskite has recently been studied as it is suitable for the ease of process as well as for its properties as a tandem solar cell material. In this study, we want to review the research trends and technology limitations of 2-T Perovskite/SHJ tandem junction solar cells.
Keywords
2-Terminal; Tandem junction; Solar cell; Perovskite/Silicon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Keppner, P. Torres, J. Meier, R. Platz, D. Fischer, U. Kroll, S. Dubail, J.A. Anna Selvan, N. Pellaton Vaucher, Y. Ziegler, R. Tscharner, C. Hof, N. Beck, M. Goetz, P. Pernet, M. Goerlitzer, N. Wyrsch, J. Veuille, J. Cuperus, A. Shah, J. Pohl, The "Micromorph" Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?, MRS Proc., 452, 865-876 (1996).   DOI
2 A.D. Afrasiab, F.E. Khan, A.D. Subhan, S.D. Khan, M.S. Khan, M.S. Ahmad, M. Rehan, M. Noman, "Optimization of efficient monolithic perovskite/silicon tandem solar cell," Optik. Mat. Sci., 164573 (2020).
3 A. Ng, Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, G. Bai, J. Wang, L. Yang, S.K. So, A.B. Djurisic, W.W.-f. Leung, J. Hao, W.K. Chan, C. Surya, "Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers," Journal of Materials Chemistry A, 3, 9223-9231 (2015).   DOI
4 L. Mazzarella, Y.H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte, S. Albrecht, E. Crossland, B. Stannowski, C. Case, H.J. Snaith, R. Schlatmann, "Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%," Adv. Energy Mater., 9(14), 1803241 (2019).   DOI
5 J. Werner, A. Walter, E. Rucavado, S.-J. Moon, D. Sacchetto, M. Rienaecker, R. Peibst, R. Brendel, X. Niquille, S. De Wolf, P. Loper, M. Morales-Masis, S. Nicolay, B. Niesen, C. Ballif, "Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells," Appl. Phys. Lett., 109, 233902 (2016).   DOI
6 E. Aydin, J. Liu, E. Ugur, R. Azmi, G.T. Harrison, Y. Hou, B. Chen, S. Zhumagali, M. De Bastiani, M. Wang, W. Raja, T.G. Allen, A.u. Rehman, A.S. Subbiah, M. Babics, A. Babayigit, F.H. Isikgor, K. Wang, E. Van Kerschaver, L. Tsetseris, E.H. Sargent, F. Laquai, S. De Wolf, "Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n-i-p perovskite/silicon tandem solar cells," Energy Environ. Sci., 14, 4377-4390 (2021).   DOI
7 De Vos. A, "Detailed balance limit of the efficiency of tandem solar cells," J. Phys, D: Appl. Phys, 13(5), 839 (1980).   DOI
8 International Technology Roadmap for Photovoltaic (ITRPV) 2016 Results, Eight Edition (2017).
9 A. Richter, M. Hermle, S. W. Glunz, "Reassessment of the limiting efficiency for crystalline silicon solar cells," IEEE Journal of Photovoltaics, 3(4), 1184-1191 (2013).   DOI
10 J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, "Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2," J. Phys. Chem. Lett., 7, 1, 161-166 (2016).   DOI
11 Kim, H., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H. and Kim, Y., "Organic Solar Cells Based on Conjugated Polymers : History and Recent Advances," Korean J. Chem. Eng, 31, 1095-1104 (2014).   DOI
12 Lee, J.-W., Hsieh, Y.-T., Marco, N. D., Bae, S.-H., Han, Q., Yang, Y.,"Halide perovskite for tandem solar cells," J.Phys. Chem. Lett., 8(9), 1999-2011 (2017).   DOI
13 S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Gratzel, B. Rech, "Monolithic perovskite/silicon- heterojunction tandem solar cells processed at low temperature," Energy Environ. Sci., 9, 81-88 (2016).   DOI
14 J. Ge, Z.P. Ling, J. Wong, R. Stangl, A.G. Aberle, T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," J. Appl. Phys, 113(23), 234310 (2013).   DOI
15 W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. Uk Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, "Iodide management in formamidinium- lead-halide-based perovskite layers for efficient solar cells," Science, 356(6345), 1376-1379 (2017).   DOI
16 E. Lamanna, F. Matteocci, E. Calabro, L. Serenelli, E. Salza, L. Martini, F. Menchini, M. Izzi, A. Agresti, S. Pescetelli, S. Bellani, A.E.D.R. Castillo, F. Bonaccorso, M. Tucci, A.D. Carlo, "Mechanically Stacked, Two- Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%," Joule, 4(4), 865-881 (2020).   DOI
17 International Technology Roadmap for Photovoltaic (ITRPV) 2021 Results, Eight Edition (2021).
18 K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, 2, 17009 (2017).   DOI
19 Z. Qiu, Z. Xu, N. Li, N. Zhou, Y. Chen, X. Wan, J. Liu, N. Li, X. Hao, P. Bi, Q. Chen, B. Cao, H. Zhou, "Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber," Nano Energy, 53, 798-807 (2018).   DOI
20 B. Chen, J.Y. Zhengshan, S. Manzoor, S. Wang, W. Weigand, Z. Yu, G. Yang, Z. Ni, X. Dai, Z.C. Holman, J. Huang, "Blade-coated perovskites on textured silicon for 26%- efficient monolithic perovskite/silicon tandem solar cells," Joule, 4(4), 850-864 (2020).   DOI
21 B. Macco, J. Melskens, N.J. Podraza, K. Arts, C. Pugh, O. Thomas, W.M.M. Kessels, "Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si: H after rapid thermal annealing," J. Appl. Phys. 122(3), 035302 (2017).   DOI
22 D. Pascual Sanchez, "Crystalline silicon Heterojunction solar cells," in, Universitat Politecnica de Catalunya (2015).
23 J.J.A.P.L. Meier, R. Fl. fluckiger, H. Keppner, A. Shah, 65, 860 (1994).
24 P. Alpuim, V. Chu, J.P. Conde, "Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition," J. Vac. Sci. Technol., A 19, 2328-2334 (2001).   DOI