• Title/Summary/Keyword: Periodic Structure

Search Result 601, Processing Time 0.039 seconds

On the use of the wave finite element method for passive vibration control of periodic structures

  • Silva, Priscilla B.;Mencik, Jean-Mathieu;Arruda, Jose R.F.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.299-315
    • /
    • 2016
  • In this work, a strategy for passive vibration control of periodic structures is proposed which involves adding a periodic array of simple resonant devices for creating band gaps. It is shown that such band gaps can be generated at low frequencies as opposed to the well known Bragg scattering effects when the wavelengths have to meet the length of the elementary cell of a periodic structure. For computational purposes, the wave finite element (WFE) method is investigated, which provides a straightforward and fast numerical means for identifying band gaps through the analysis of dispersion curves. Also, the WFE method constitutes an efficient and fast numerical means for analyzing the impact of band gaps in the attenuation of the frequency response functions of periodic structures. In order to highlight the relevance of the proposed approach, numerical experiments are carried out on a 1D academic rod and a 3D aircraft fuselage-like structure.

Radiation Characteristics of Dielectric-Coated Conducting Cylinder Loaded with Periodic Corrugation (주기적인 구형격자로 로딩된 유전체 코팅된 도체 실린더의 복사 특성)

  • Kim, Joong-Pyo;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.388-402
    • /
    • 2000
  • The radiation characteristics of leaky antenna from the dielectric-coated conducting cylinder with periodic corrugation are investigated theoretically for the infinite and finite periodic structures. For the infinite periodic structure, mode-matching method is applied. The integral equation is derived for the finite periodic structure by use of the Fourier transform and mode expansion and a simultaneous linear equation is obtained. The influences of the corrugation slot width, corrugation depth, dielectric thickness, cylinder radius, and finite corrugation number on the radiation characteristics (leakage constant, phase constant, and radiation pattern) are investigated. The results of the finite periodic corrugations are compared with those of the infinite extent structure and good agreement is found. To reduce high side lobe levels of the uniform finite periodic structure, tapering process on the beginning and end section of antenna and nonuniform quasi-period slot arrays are considered. Especially, for the corrugation period, width and depth used for a corrugated surface wave antenna, through the proper tapering process, end-fire radiation pattern with reduced side lobe levels is given.

  • PDF

Theoretical Description of All-Optical Switching Phenomena Involving Coupled Gap Solitons

  • Lee, Sangjae
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.403-413
    • /
    • 1996
  • We study the propagation of two pulses with orthogonal linear polarizations in a nonlinear periodic dielectric structure with $X^{(3)}$ nonlinearity. Using an envelope- function approach, we derive the coupled nonlinear Schrodinger equations governing the spatio-temporal evolutions of the two orthogonally polarized modes in a nonlinear periodic structure. We then find their solitary-wave solutions referred to as coupled gap solitons. We show that two orthogonally polarized pulses can co-propagate as a coupled gap soliton through a nonlinear periodic structure while each pulse alone will be strongly reflected due to the Bragg reflection. Based on the results, we present an all-optical switching scheme which has a novel architecture and principle. We also study the stability of coupled gap solitons to find the dragging phenomena in a nonlinear birefringent periodic medium.

  • PDF

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.

X-ray Reflection Mirror of the Periodic Multilayer Structure (주기적인 구조를 갖는 X-선 반사경 설계)

  • Gwon, Taek-Yong;Jeong, Jin-U;Sin, Jin-Uk;Choe, Jae-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.21-22
    • /
    • 2007
  • The periodic multilayer is considered as the X-ray reflection mirror. High X-ray reflectivity from the incident angle greater than the grazing critical angle can be obtained by the periodic multilayer structure. The Optical constants are investigated in order to determine the material for X-ray reflection mirror. The X-ray reflection mirror is designed for W, Si using computer simulation. The reflectivity is calculated for various incident angles and ratio of thickness.

  • PDF

On Vibration Characteristics Study of Thermo-Visco-Plastic Material Under Periodic Thermal Loading (반복적 열하중을 받는 열탄점소성 구조물의 진동 특성 연구)

  • 김덕관;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.49-54
    • /
    • 1997
  • In this paper, vibration characteristics are considered about thermo-visco-plastic material under periodic thermal loading. When in high temperature region, thermo-visco-plastic structure has a periodic thermal loading, it is very important in an accumulated structure like a spacestation to investigate vibration characteristic, stress-strain characteristic is considered in various 2-D model by finite element method.

  • PDF

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution (주기적인 강성분포를 갖는 구형쉘의 좌굴해석)

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.77-84
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, the object of this study is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

The two-scale analysis method for bodies with small periodic configurations

  • Cui, J.Z.;Shih, T.M.;Wang, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.601-614
    • /
    • 1999
  • The mechanical behaviours of the structure made from composite materials or the structure with periodic configurations depend not only on the macroscopic conditions of structure, but also on the detailed configurations. The Two-Scale Analysis (TSA) method for these structures, which couples the macroscopic characteristics of structure with its detailed configurations, is configurations, is presented for 2 or 3 dimensional case in this paper. And the finite element algorithms based on TSA are developed, and some results of numerical experiments are given. They show that TSA with its finite element algorithms is more effective.

Dynamic Analysis of the Tire by Sector Method (섹터해석법을 이용한 타이어의 동특성 해석)

  • 이인원;김동옥;김항우;정상우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2173-2180
    • /
    • 1995
  • This paper presents free vibration analysis method using the characteristics of the rotationally periodic structures and includes the analysis results of a tire as an example. The normal modes of the rotationally periodic structures are the kind of standing waves, so all sectors have the same deflection shapes, and only different phases. This property makes it possible to derive the analysis method called sector method. The sector method can give the accurate natural frequencies and the corresponding mode shapes of the rotationally periodic structure with information of only one sector. When the free vibration analysis is performed to find the dynamic characteristics of the rotationally periodic structure by using the sector method, the computer memory spaces and the CPU times can be saved. We obtained much economic benefits by using the sector method in the analysis of dynamic characteristics of a tire made of non-linear materials.

A Novel PBG structure LPF for Performance improvement of Microstrip Circuits. (마이크로스트립 회로 성능 개선을 위한 새로운 PBG 구조의 LPF)

  • 김태선;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.430-434
    • /
    • 2000
  • In this paper, a novel photonic bandgap(PBG) structure is proposed for increasing stropband of lowpass filter without the size increment of circuit for application in microstrip circuits. The proposed structure is connected in parallel two periodic structures which have different center frequency of the stopband. The wide stopband is achieved by two periodic structures of two different stopbands. We also show the performance improvement of microstrip patch antenna by etching of the proposed structure in ground plane.

  • PDF