• Title/Summary/Keyword: Perilla Frutescens L. Britt

Search Result 12, Processing Time 0.03 seconds

Functional Ingredients of Perilla Frutescens L. Britt Extracts and Preparation of PVA Nanoweb Containing Extracts (자소 추출물의 기능성 성분과 자소 추출물을 함유하는 PVA 나노 섬유의 제조)

  • Wang, Qian Wen;Lee, Jung-Soon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.256-267
    • /
    • 2017
  • The purpose of this study was to analyze the functional ingredients of Perilla Frutescens L. Britt extracts and to confirm the possibility of producing PVA nanofibers using extracts. Distilled water, 3% aqueous sodium hydroxide solution and ethanol were used as extraction solvents. The electrospinning was carried out at a PVA concentration of 12%, an applied voltage of 10 kV and a tip to collector distance of 15cm. The contents of volatile substances, essential oils, total polyphenols and flavonoids of the extracts were measured to examine the constituents of functional materials. Flavor components and esters were identified in 3% sodium hydroxide and ethanol extracts. The content of polyphenols and flavonoids in ethanol extracts was higher than that of medicinal plants. 1wt.% of Tween 20 was added to disperse the essential oil components of the ethanol extract. Addition of a dispersant made it possible to produce a homogeneous mixture by having some compatibility with the ethanol extracts and the PVA molecule. When the concentration of the ethanol extract was 0.25 and 0.5wt%, relatively uniform PVA nanofiber having an average diameter of 350 to 365nm could be produced. The results of FT-IR, XRD and DSC analysis confirmed that Perilla Frutescens L. Britt ethanol extract was well mixed with PVA molecules and was electrospun.

Characteristics and Dyeability of Perilla Frutescens L. Britt Extracts with Different Solvents (추출용매에 따른 자소 색소의 염색성 및 기능성)

  • Wang, Qian Wen;Lee, Jung-Soon
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.195-207
    • /
    • 2016
  • In this study, we examined the influence of the pigment characteristic and dyeing condition on dyeing properties and functionality by using Perilla Frutescens L. Britt extracts, in which ethanol, distilled water and NaOH solution were used as 3 different solvents. Changes in dyeing conditions include variations in dye concentration, dyeing temperature, time and pH on dye uptake, and K/S values were compared according to these changes. Additionally, color changes were observed according to the use and types of mordant. Ultraviolet-visible spectrum was utilized to investigate the pigment characteristic, and as a result, chlorophyll was identified in ethanol extract, whereas tannin was identified both in distilled water extract and NaOH solution extract. By using FT-IR analysis, these tannins in distilled-water-extract and NaOH solution extract were verified to be hydrolyzable tannin. When dyeing silk, dye uptake increased as dye concentration, dyeing temperature and time increased, while it decreased as pH of the extract increased. Fabrics dyed without a mordant produced Y-series colors, and fabrics dyed with mordants showed various colors depending on the mordant types. Even though color fastness to washing and light was unsatisfactory, fastness to rubbing and perspiration showed relatively high grade. Moreover, deodorant ability of dyed fabric improved.

Inhibition of an Inducible Nitric Oxide Synthase Expression by a Hexane Extract from Perilla frutescens cv. Chookyoupjaso Mutant Induced by Mutagenesis with Gamma-ray (방사선 유도 돌연변이 약용들깨 핵산 추출물의 Inducible Nitric Oxide Synthase 저해활성)

  • Park, Yong Dae;Kang, Min Ah;Lee, Hyo Jung;Jin, Chang Hyun;Choi, Dae Seong;Kim, Dong Sub;Kang, Si-Yong;Byun, Myung Woo;Jeong, Il Yun
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In earlier investigations, seeds of Perilla frutescens(L.) Britt. cv. Chookyoupjaso were irradiated with 200 Gy gamma ray to generate mutagenesis. The aim of this study is to investigate the effects of a hexane extract from Perilla frutescens (L.) Britt. cv. Chookyoupjaso mutant 45 on the actions of anti-inflammatory activity on inducible nitric oxide synthase, and an identification of the major active compound. The hexane extract from P. frutescens exhibited activity of inhibition of a NO production ($IC_{50}$, $295.1{\mu}g\;ml^{-1}$). The hexane extract was further divided into subfractions by silica-gel chromatogarphy. Inhibition of the NO production by various fractions was assayed in LPS-stimulated RAW 264.7 cells. Among the seven fractions, the 5th fraction was the most effective ($IC_{50}$, $19.5{\mu}g\;ml^{-1}$). The 5th fraction suppressed the expression of protein of iNOS in LPS-induced RAW 264.7 cells, and GC/MS analyses showed that isoegomaketone is a major bio-active compound in the 5th fraction. The result indicated that isoegomaketone has a good potential to be developed as an anti-inflammation agent.

Growth Modeling of Perilla frutescens (L.) Britt. Using Expolinear Function in a Closed-type Plant Factory System (완전제어형 식물공장에서 선형지수함수를 이용한 들깨의 생육 모델링)

  • Seounggwan Sul;Youngtaek Baek;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 2023
  • Growth modeling in plant factories can not only control stable production and yield, but also control environmental conditions by considering the relationship between environmental factors and plant growth rate. In this study, using the expolinear function, we modeled perilla [Perilla frutescens (L.) Britt.] cultivated in a plant factory. Perilla growth was investigated 12 times until flower bud differentiation occurred after planting under light intensity, photoperiod, and the ratio of mixed light conditions of 130 μmol·m-2·s-1, 12/12 h, red:green:blue (7:1:2), respectively. Additionally, modeling was performed to predict dry and fresh weights using the expolinear function. Fresh and dry weights were strongly positively correlated (r = 0.996). Except for dry weight, fresh weight showed a high positive correlation with leaf area, followed by plant height, number of leaves, number of nodes, leaf length, and leaf width. When the number of days after transplanting, leaf area, and plant height were used as independent variables for growth prediction, leaf area was found to be an appropriate independent variable for growth prediction. However, additional destructive or non-destructive methods for predicting growth should be considered. In this study, we created a growth model formula to predict perilla growth in plant factories.

Anti-Obesity Effect of Isoegomaketone Isolated from Perilla frutescens (L.) Britt. cv. Leaves (들깨 잎 추출물에서 분리한 Isoegomaketone(IK)의 항 비만 효능)

  • So, Yangkang;Jo, Yun Ho;Nam, Bo Mi;Lee, Seung Young;Kim, Jin-Baek;Kang, Si-Yong;Jeong, Hye Gwang;Jin, Chang Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • In this study, we investigated anti-obesity effect of isoegomaketone (IK) isolated from leaves extract of Perilla frutescens (L.) Britt. cv. We verified differentiation and lipid accumulation by Oil Red O staining in 3T3-L1 cells after IK treatment with differentiation media. IK inhibited mRNA expression of adipocyte specific genes that were related with differentiation of 3T3-L1 cells. We confirmed the effects of IK on body weight and visceral fat mass in obese mice. Mice were randomly divided into three groups; normal diet group (ND), high-fat diet group (HFD) and high-fat diet with IK group (HFD-IK). The obesity mice were induced by feeding the 45% high-fat diet to the C57BL/6J mice during 4 weeks. After HFD-IK was orally administered 10 mg/kg of IK. As a result, the body weight of HFD and HFD-IK was increased 2.4 times and 1.7 times of ND, respectively. Also visceral fat mass of HFD was increased 24 times but in the case of HFD-IK was increased to 13 times in comparison with ND. Taken together, our findings suggest that IK reduced differentiation and adiogenesis in 3T3-L1 cells, decreased the body weight and visceral fat mass in obesity mice. These results suggest that IK may have a potential benefit as anti-obesity material.

Antioxidant and Neuroprotective Effects of Perilla frutescens var. japonica Leaves (들깨 잎 추출물의 항산화 및 신경세포 보호작용)

  • Lee, Jong-Im;Jin, Chang-Bae;Ryu, Jae-Ha;Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The leaves of Perilla frutescens Britt. var. japonica Hara (Labiatae) are often used in gourmet food in several Asian countries. Two kinds of perilla cultivars, Namcheon (NC) and Bora (BR), have been respectively developed in Korea by the pure line of 'deulkkae' from the local variety and by the cross of 'deulkkae' and 'chajogi'. The present study evaluated and compared antioxidant and neuroprotective effects of the fractions prepared from the leaves of the two cultivars using cell-free bioassay systems and primary cultured rat cortical cells. We found that the spirit, chloroform, hexane and butanol fractions from NC and BR leaves inhibited lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In contrast, only the spirit and butanol fractions from both cultivars exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among the fractions tested, the butanol fractions from NC and BR leaves exhibited the most potent antioxidant properties, and the butanol fraction from BR was more potent than the NC fraction. In consistence with these findings, the butanol fractions from both cultivars protected primary cultured cortical cells from the oxidative damage induced by $H_2O_2$ or xanthine and xanthine oxidase, with the BR butanol fraction being more active. The butanol fractions from NC and BR did not produce cytotoxicity in our cultures treated for 24 h at the concentrations of up to $100\;{\mu}g/ml$. Taken together, these results indicate that the leaves of the two cultivars of Perilla frutescens exert antioxidant and neuroprotective effects, and that the butanol fraction from BR leaves exhibits the most potent antioxidative neuroprotection among the fractions tested in this study.

Transformation of Cell Wall-weakened Perilla Seedlings Using Phenolic Compound-treated Agrobacterium Cells and Recombinant Protein Expression (페놀화합물 처리 Agrobacterium 및 세포벽 약화 들깨새싹을 이용한 형질전환과 재조합 단백질 발현)

  • Chung, Il-Kyung;Shin, Dong-Il;Park, Hee-Sung
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.598-601
    • /
    • 2009
  • Perilla [Perilla frutescens (L.) Britt] seedlings are easy to grow and eaten as the health vegetable sprout. Two day old perilla seedlings since germination were given a mild wounding using cell wall lytic NaOH/SDS solution for infiltration with recombinant Agrobacterium cells treated with phenolic compounds. In the analysis of fluorometric GUS gene expression for the transformed perilla seedlings, GUS enzyme activity was the highest by the combined treatments of 50 mM acetosyringone and 0.5% NaOH solution containing 0.01% SDS implying a synergic effect. This result could be successfully applied for demonstrating hepatitis B virus antigen (HBsAg) protein expression.

Protective Effects of Perilla frutescens Britt var. japonica Extracts from Oxidative Stress in Human HaCaT Keratinocytes (HaCaT 피부각질세포에서 들깻잎 추출물의 산화적 스트레스에 대한 항산화 효과)

  • Ji, Na;Song, Jia-Le;Kil, Jeung-Ha;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.161-167
    • /
    • 2013
  • The aim of this study was to investigate the protective effects of methanolic extract from perilla (Perilla frutescens Britt var. japonica) leaves (PLME) on oxidative injury from hydrogen peroxide ($H_2O_2$) in human HaCaT keratinoctyes. Cells were co-incubated with various concentrations (0~200 ${\mu}g/mL$) of PLME for 24 hr, and then exposed to $H_2O_2$ (500 ${\mu}M$) for 4 hr. $H_2O_2$ significantly decreased cell viability (p<0.05). However, PLME provided protection from $H_2O_2$-induced HaCaT cell oxidation in a dose-dependent manner. To further investigate the protective effects of PLME on $H_2O_2$-induced oxidative stress in HaCaT cells, the cellular levels of lipid peroxidation, and antioxidant enzymes (including superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT)) were measured. PLME decreased cellular levels of lipid peroxidation, and also increased the activities of antioxidant enzymes. In addition, the antioxidant activities of PLME were also determined by DPPH and hydroxyl (${\cdot}OH$) radical scavenging assay, and major antioxidant compounds of PLME were measured by colorimetric methods. DPPH and ${\cdot}OH$ radical scavenging activities of PLME increased in a dose dependent manner and was similar to the DPPH scavenging activity of ascorbic acid at 50 ${\mu}g/mL$; however PLME activities were stronger than ascorbic acid (50 ${\mu}g/mL$) in the ${\cdot}OH$ scavenging assay. The amounts of antioxidant compounds, including total polyphenolics, total flavonoids, and total ascorbic acid from PLME were $52.2{\pm}1.1$ mg gallic acid (GAE)/g, $33.7{\pm}4.7$ mg rutin (RUE)/g, and $17.0{\pm}0.5$ mg ascorbic acid (AA)/g, respectively. These results suggest that PLME has a strong free radical-scavenging activity and a protective effect against $H_2O_2$-induced oxidative stress in the keratinocytes.

The Extrapolations to Reduce the Need for Pesticide Residues Trials on Continuous Harvesting Leafy Vegetables (농약 잔류 시험을 위한 연속수확 엽채소류의 외삽)

  • Son, Kyeong-Ae;Im, Geon-Jae;Hong, Su-Myeong;Kim, Chan Sub;Gil, Geun-Hwan;Jin, Yong-Duk;Kim, Jinba;Ihm, Yang Bin;Ko, Hyeon Seok;Kim, Jang Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study was carried out to investigate the pesticide residue pattern among different leafy vegetables applied with foliar spraying under greenhouse and to check extrapolating from some residue trial data to other minor crops. Leafy vegetables used in this study were: Mustard greens (Brassica juncea L.), Kale (Brassica oleracea L.), Dacheongchae (a kind of pak-choi (Brassica rapa subsp. chinensis L.)), Leaf broccoli (Brassica oleracea var alboglabra), Perilla leaf (Perilla frutescens (L.) Britton var. Frutescens), Leaf lettuce (Lactuca sativa L.), Swiss chard (Beta vulgaris L. subsp. vulgaris) and Red leaf chicory (Cichorium intybus L. var. foliosum Hegi). These are cultivated all year under indoor or outdoor and cut the leaf from plant continuously during harvest time. The amounts of pesticide deposit in/on the continuous harvesting leafy vegetables were affected by the ratios of leaf area to weight. Ratio of perilla leaf was the largest among crops as 58 $cm^2/g$. The residue levels of 7 pesticides in/on perilla leaf were the highest than those of other crops through the statistical analysis from zero day to fifth day after last application. The representative crop in 8 crops was perilla leaf selected based on the amounts of daily consumption and the high residues. This study suggest that the continuous harvesting leafy greens should be separated from the one time harvesting leafy vegetables for the pesticide recommendations because of different harvesting habits and pre-harvest intervals.

Isolation and Structure Identification of Photosensitizer from Perilla frutescens Leaves Which Induces Apoptosis in U937 (들깻잎(Perilla frutescens)으로부터 U937 세포에 apoptosis를 유도하는 광과민성 물질의 분리 및 구조동정)

  • Ha, Jun Young;Kim, Mi Kyeong;Lee, Jun Young;Choi, Eun Bi;Hong, Chang Oh;Lee, Byong Won;Bae, Chang Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we tried to separate the photosensitizer that induces apoptosis of leukemia cells (U937) from perilla leaves. Perilla leaves (Perilla frutescens Britt var. japonica Hara) are a popular vegetable in Korea, being rich in vitamins (A and E), GABA, and minerals. Dried perilla leaves were extracted with methanol to separate the photosensitizer by various chromatographic techniques. The structure of the isolated compound (PL9443) was identified by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. Absorbance of the UV-Vis spectrum was highest at 410 nm and was confirmed by the 330, 410, and 668 nm. PL9443 compound was determined to be pheophorbide, an ethyl ester having a molecular weight of 620. It was identified as a derivative compound of pheophorbide structure when magnesium comes away from a porphyrin ring. Observation of morphological changes in U937 cells following cell death induced by treated PL9443 compound revealed representative phenomena of apoptosis only in light irradiation conditions (apoptotic body, vesicle formation). Results from examining the cytotoxicity of PL9443 substance against U937 cells showed that inhibition rates of the cell growth were 99.9% with the concentration of 0.32 nM PL9443. Also, the caspase-3/7 activity was 99% against U937 cells with the concentration of 0.08 nM of PL9443 substance. The result of the electrophoresis was that a DNA ladder was formed by the PL9443. The PL9443 compound is a promising lead compound as a photosensitizer for photodynamic therapy of cancer.