DOI QR코드

DOI QR Code

Growth Modeling of Perilla frutescens (L.) Britt. Using Expolinear Function in a Closed-type Plant Factory System

완전제어형 식물공장에서 선형지수함수를 이용한 들깨의 생육 모델링

  • Seounggwan Sul (Department of Horticultural Science, Jeju National University) ;
  • Youngtaek Baek (Department of Horticultural Science, Jeju National University) ;
  • Young-Yeol Cho (Department of Horticultural Science, Jeju National University)
  • 설성관 (제주대학교 생명자원과학대학 원예학과) ;
  • 백영택 (제주대학교 생명자원과학대학 원예학과) ;
  • 조영열 (제주대학교 생명자원과학대학 원예학과)
  • Received : 2022.12.21
  • Accepted : 2023.01.18
  • Published : 2023.01.31

Abstract

Growth modeling in plant factories can not only control stable production and yield, but also control environmental conditions by considering the relationship between environmental factors and plant growth rate. In this study, using the expolinear function, we modeled perilla [Perilla frutescens (L.) Britt.] cultivated in a plant factory. Perilla growth was investigated 12 times until flower bud differentiation occurred after planting under light intensity, photoperiod, and the ratio of mixed light conditions of 130 μmol·m-2·s-1, 12/12 h, red:green:blue (7:1:2), respectively. Additionally, modeling was performed to predict dry and fresh weights using the expolinear function. Fresh and dry weights were strongly positively correlated (r = 0.996). Except for dry weight, fresh weight showed a high positive correlation with leaf area, followed by plant height, number of leaves, number of nodes, leaf length, and leaf width. When the number of days after transplanting, leaf area, and plant height were used as independent variables for growth prediction, leaf area was found to be an appropriate independent variable for growth prediction. However, additional destructive or non-destructive methods for predicting growth should be considered. In this study, we created a growth model formula to predict perilla growth in plant factories.

식물공장에서 생육 모델링은 안정적인 생산과 수확량을 조절하는 데 필수적일 뿐만 아니라 환경 데이터와 생육량의 관계를 비교하여 환경 조건을 제어할 수 있는 도구가 되기도 한다. 본 연구는 식물공장에서 재배하는 들깨[Perilla frutescens (L.) Britt.]에 대해 선형지수함수를 이용해 모델링하였다. 광도, 광주기, 혼합광의 비율을 각각 130μmol·m-2·s-1, 12/12시간, R:G:B(7:1:2)로 설정하여 정식한 후 화아분화가 발생할 때까지 12회 생육 조사하였고, 건물중과 생체중 예측을 위해 선형지수함수를 이용하여 모델링하였다. 생체중과 건물중 간의 상관계수는 가장 높은 양의 상관관계(r = 0.996)를 보였고, 생체중과의 관계에서 건물중을 제외하면 엽면적, 초장, 엽수, 마디수, 엽장, 엽폭의 순으로 높은 양의 상관관계를 나타내었다. 생육 예측을 위한 독립변수로 정식 후 일수, 엽면적과 초장을 사용하였는데, 생육 예측을 위한 적합한 독립변수로는 엽면적이었다. 다만, 생육을 예측하기 위한 파괴적인 방법 또는 비파괴적인 방법에 대해 고려해야 할 것이다. 본 연구에서 식물공장에서 들깨의 생육을 예측하기 위한 생육 모델식을 만들었다.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (421033042HD050).

References

  1. Ann S.W., J.M. Lee, and Y.K. Cho 2020, Perilla leaf fertilization effect of fertilizer by chlorella and seafood by-product fermentation. J Environ Sci Int 29:423-434. (in Korean) doi:10.5322/JESI.2020.29.4.423
  2. Cha M.K., J.S. Kim, and Y.Y. Cho 2014, Growth model of common ice plant (Mesembryanthemum crystallinum L.) using expolinear functions in a closed-type plant production system. Hortic Sci Technol 32:493-498. (in Korean) doi:10.7235/hort.2014.14013
  3. Cho Y.Y., S. Oh, M.M. Oh, and J.E. Son 2007, Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci Hortic 111:330-334. doi:10.1016/j.scienta.2006.12.028
  4. Choi Y.W., C.K. Ahn, J.S. Kang, B.G. Son, I.S. Choi, Y.C. Kim, Y.G. Lee, K.K. Kim, Y.G. Kim, and K.W. Son 2003, Growth, photomorphogenesis, and photosynthesis of perilla grown under red, blue light emitting diodes and light intensities. Hortic Environ Biotechnol 44:281-286.
  5. Goudriaan J., and J.L. Monteith 1990, A mathematical function for crop growth based on light interception and leaf area expansion. Ann Bot 66:695-701. doi:10.1093/oxfordjournals.aob.a088084
  6. Jung D.H., Y.Y. Cho, J.G. Lee, and J.E. Son 2016, Estimation of leaf area, leaf fresh weight, and leaf dry weight of Irwin mango grown in greenhouse using leaf length, leaf width, petiole length, and SPAD value. Protected Hort Plant Fac 25:146-152. (in Korean) doi:10.12791/KSBEC.2016.25.3.146
  7. Kim J.S., W.H. Kang, T.I. Ahn, J.H. Shin, and J.E. Son 2016, Precise, real-time measurement of the fresh weight of lettuce with growth stage in a plant factory using a nutrient film technique. Hortic Sci Technol 34:77-83. (in Korean) doi:10.12972/kjhst.20160020
  8. Kim S.K., J.H. Lee, H.J. Lee, S.G. Lee, B. Mun, S. An, and H.S. Lee 2018, Development of prediction growth and yield models by growing degree days in hot pepper. Protected Hort Plant Fac 27:424-430. (in Korean) doi:10.12791/KSBEC.2018.27.4.424
  9. Lee J.H., J. Goudriaan, and H. Challa 2003, Using the expolinear growth equation for modelling crop growth in year-round cut chrysanthemum. Ann Bot 92:697-708. doi:10.1093/aob/mcg195
  10. Moon T., J. Park, and J.E. Son 2020, Estimation of sweet pepper crop fresh weight with convolutional neural network. Protected Hort Plant Fac 29:381-387. (in Korean) doi:10.12791/KSBEC.2020.29.4.381
  11. Nguyen T.K.L., and M.M. Oh 2021, Physiological and biochemical responses of green and red perilla to LED-based light. J Sci Food Agric 101:240-252. doi:10.1002/jsfa.10636
  12. Park Y.G., H.J. Oh, and B.R. Jeong 2013, Growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo as affected by light source and DIF under controlled environment. Hortic Environ Biotechnol 54:103-108. doi:10.1007/s13580-013-0147-2
  13. Sul S.W., Y.T. Baek, and Y.Y. Cho 2022, Effects of light intensity, light quality and photoperiod for growth of perilla in a closed-type plant factory system. J Bio-Env Con 31: 180-187. (in Korean) doi:10.12791/KSBEC.2022.31.3.180
  14. Tackenberg O. 2007, A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis. Ann Bot 99:777-783. doi:10.1093/aob/mcm009