• Title/Summary/Keyword: Perilipin 5

Search Result 12, Processing Time 0.028 seconds

Perilipin 5 is a novel target of nuclear receptor LRH-1 to regulate hepatic triglycerides metabolism

  • Pantha, Rubee;Lee, Jae-Ho;Bae, Jae-Hoon;Koh, Eun Hee;Shin, Minsang;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.476-481
    • /
    • 2021
  • Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.

The Effect of Ephedra sinica Pharmacopuncture on Lipid Metabolism in an Experimental Mouse Model of Obesity (마황약침(麻黃藥鍼)이 비만 유발 생쥐의 지방대사에 미치는 영향)

  • Kim, Hyo-jae;Kim, Eun-ji;Han, Yang-hee
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.579-590
    • /
    • 2016
  • Objectives: This study aimed to investigate the impact of Ephedra sinica pharmacopuncture on the weight and lipid metabolism of obese mice.Methods: Obesity was induced in male C57BL/6 mice by a 60% fat diet. The animals were divided into three groups (n=5) fed a normal diet, high-fat diet, and high-fat diet with Ephedra sinica pharmacopuncture. After 13 wk, fasting blood sugar levels were measured in each group, and oral glucose tolerance tests were conducted. After 15 wk, body weight, epididymal fat pad weight, subcutaneous fat pad weight, and serum lipid and gene expression of hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL), monoacylglycerol lipase (MGL), perilipin, and peroxisome proliferator-activated receptor (PPAR)-γ were measured in each group.Results: In the Ephedra group, body weight, fasting blood sugar, and oral glucose tolerance were significantly decreased. In addition, in the Ephedra group, the gene expression of HSL was significantly increased, whereas that of perilipin was significantly decreased.Conclusions: These results provide evidence that E. sinicapharmacopuncture affects obesity and obesity-induced metabolic syndrome, including insulin resistance and dyslipidemia, by activating lipolysis via the HSL pathway in adipose tissue.

Inhibitory Effect of Dihydroartemisinin, An Active Ingredient of Artemisia annua, on Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes

  • Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: Artemisinin and its derivatives extracted from Artemisia annua, a Chinese herbal medicine, have variable biological effects due to structural differences. Up to date, the anti-obesity effect of dihydroartemisinin (DHA), a derivative of artemisinin, is unknown. The purpose of this study was to investigate the anti-adipogenic and lipolytic effects of DHA on 3T3-L1 preadipocytes. Methods: Oil Red O staining and AdipoRed assay were used to measure lipid accumulation and triglyceride (TG) content in 3T3-L1 cells, respectively. Cell count analysis was used to determine the cytotoxicity of 3T3-L1 cells. Western blot and real-time reverse transcription polymerase chain reaction analyses were used to analyze the expression of protein and mRNA in 3T3-L1 cells, respectively. Results: DHA at 5 μM markedly inhibited lipid accumulation and reduced TG content in differentiating 3T3-L1 cells with no cytotoxicity. Furthermore, DHA at 5 μM inhibited the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A as well as the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Moreover, while DHA at 5 μM had no effect on the mRNA expression of adiponectin, it strongly suppressed that of leptin in differentiating 3T3-L1 cells. However, DHA at 5 μM had no lipolytic effect on differentiated 3T3-L1 cells, as assessed by no enhancement of glycerol release. Conclusions: These results demonstrate that DHA at 5 μM has a strong anti-adipogenic effect on differentiating 3T3-L1 cells through the reduced expression and phosphorylation of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin;Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.

Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens

  • Zhang, Lu;Zhu, Qing;Liu, Yiping;Gilbert, Elizabeth R.;Li, Diyan;Yin, Huadong;Wang, Yan;Yang, Zhiqin;Wang, Zhen;Yuan, Yuncong;Zhao, Xiaoling
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.763-770
    • /
    • 2015
  • Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5' flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens.

Immuno-enhancing and Anti-obesity Effect of Abelmoschus manihot Root Extracts (금화규(Abelmoschus manihot) 뿌리 추출물의 면역증진 및 항비만효과)

  • Yu, Ju Hyeong;Geum, Na Gyeong;Ye, Joo Ho;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.411-419
    • /
    • 2021
  • In this study, we investigated in vitro immune-enhancing and anti-obesity activity of Abelmoschus manihot roots (AMR) in mouse macrophage RAW264.7 cells and mouse adipocytes 3T3-L1 cells. AMR increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. The inhibition of toll like receptor (TLR) 2 and 4 blocked AMR-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of mitogen-activated protein kinases (MAPKs) signaling pathway reduced AMR-mediated production of immunostimulatory factors. From these results, AMR is considered to have immune-enhancing activity through TLR2/4-mediated activation of MAPKs signaling pathway. In addition, AMR inhibited lipid accumulation and reduced the protein level such as CCAAT enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin and fatty acid binding protein 4 (FABP4) associated with lipid accumulation in 3T3-L1 cells, indicating that AMR may have anti-obesity activity. Based on these results, AMR is expected to be used as a potential functional agent for immune enhancement and anti-obesity.

Sasa quelpaertensis Nakai ethyl acetate fraction protects the liver against chronic alcohol-induced liver injury and fat accumulation in mice (만성 알코올 유발 마우스 간손상 및 지방 축적에 대한 제주조릿대잎 에틸 아세테이트 분획물의 간 보호 효과)

  • Kim, Areum;Lee, Youngju;Herath, Kalahe Hewage Iresha Nadeeka Madushani;Kim, Hyo Jin;Yang, Jiwon;Kim, Ju-Sung;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.4
    • /
    • pp.215-223
    • /
    • 2020
  • Sasa (S.) quelpaertensis Nakai (Korean name, Jeju-Joritdae), which has anti-oxidative and anti-inflammatory activities, is a type of bamboo grass distributed widely in Jeju Island, Korea. S. quelpaertensis leaves are used for therapeutic purposes in traditional Korean medicine. This study examined the hepatoprotective effects of the S. quelpaertensis ethyl acetate fraction (SQEA) in a mouse model to mimic alcoholic liver damage. The mice were administered orally with 30% alcohol (5 g/kg) once per day with or without SQEA treatments (100 and 200 mg/kg) for 14 days consecutively. Alcohol consumption increased the serum alcohol content and histopathological changes but reduced the liver weight. Moreover, the livers of the alcohol group exhibited the accumulation of malondialdehyde and cytochrome P450 2E1 (CYP2E1), and lipid droplet coating protein perilipin-2. On the other hand, SQEA dose-dependently attenuated the alcohol-induced serum ethanol content and liver histopathological changes but increased the liver weight. Moreover, SQEA attenuated the level of CYP2E1 and inhibited alcohol-induced lipogenesis in the liver via decreased perilipin-2 expression. These results suggest that SQEA can provide a potent way to reduce the liver damage caused by alcohol consumption.

A literature Review of Single Nucleotide Polymorphisms in Obesity Genes (비만 유전자 단일 염기 다형성 문헌 고찰)

  • Kim, Sung-Soo;Song, Hee-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF

Integrated analysis of transcriptomic and proteomic analyses reveals different metabolic patterns in the livers of Tibetan and Yorkshire pigs

  • Duan, Mengqi;Wang, Zhenmei;Guo, Xinying;Wang, Kejun;Liu, Siyuan;Zhang, Bo;Shang, Peng
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.922-930
    • /
    • 2021
  • Objective: Tibetan pigs, predominantly originating from the Tibetan Plateau, have been subjected to long-term natural selection in an extreme environment. To characterize the metabolic adaptations to hypoxic conditions, transcriptomic and proteomic expression patterns in the livers of Tibetan and Yorkshire pigs were compared. Methods: RNA and protein were extracted from liver tissue of Tibetan and Yorkshire pigs (n = 3, each). Differentially expressed genes and proteins were subjected to gene ontology and Kyoto encyclopedia of genes and genomes functional enrichment analyses. Results: In the RNA-Seq and isobaric tags for relative and absolute quantitation analyses, a total of 18,791 genes and 3,390 proteins were detected and compared. Of these, 273 and 257 differentially expressed genes and proteins were identified. Evidence from functional enrichment analysis showed that many genes were involved in metabolic processes. The combined transcriptomic and proteomic analyses revealed that small molecular biosynthesis, metabolic processes, and organic hydroxyl compound metabolic processes were the major processes operating differently in the two breeds. The important genes include retinol dehydrogenase 16, adenine phosphoribosyltransferase, prenylcysteine oxidase 1, sorbin and SH3 domain containing 2, ENSSSCG00000036224, perilipin 2, ladinin 1, kynurenine aminotransferase 1, and dimethylarginine dimethylaminohydrolase 1. Conclusion: The findings of this study provide novel insight into the high-altitude metabolic adaptation of Tibetan pigs.

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.