Browse > Article
http://dx.doi.org/10.5713/ajas.14.0554

Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens  

Zhang, Lu (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Zhu, Qing (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Liu, Yiping (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Gilbert, Elizabeth R. (Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University)
Li, Diyan (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Yin, Huadong (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Wang, Yan (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Yang, Zhiqin (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Wang, Zhen (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Yuan, Yuncong (Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University)
Zhao, Xiaoling (Department of Animal Science, Sichuan Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.6, 2015 , pp. 763-770 More about this Journal
Abstract
Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5' flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens.
Keywords
Chickens; Perilipin Gene; Polymorphism; Carcass Traits; Association Analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barrett, J. C. 2009. Haploview: Visualization and analysis of snp genotype data. Cold Spring Harb Protoc. http://dx.doi.org/10.1101/pdb.ip71   DOI   ScienceOn
2 Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B (Methodological) 57:289-300.
3 Bickel, P. E., J. T. Tansey, and M. A. Welte. 2009. Pat proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta. Cell Biol. Lipids 1791:419-440.   DOI   ScienceOn
4 Clark, A. G. 2004. The role of haplotypes in candidate gene studies. Genet. Epidemiol. 27:321-333.   DOI   ScienceOn
5 Fan, H. J., X. L. Liu, J. Wang, and S. S. Hou. 2011. Analysis of plin gene pcr-rflp polymorphism and its association with carcass and adipose traits in meat ducks. Acta Agriculturae Boreali-Occidentalis Sinica, 6:004.
6 Fan, Y., L. Zan, H. Wang, and Y. Yang. 2010. Study on the relationship between polymorphism of plin gene and carcass and meat quality traits in qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.
7 Gandolfi, G., M. Mazzoni, P. Zambonelli, G. Lalatta-Costerbosa, A. Tronca, V. Russo, and R. Davoli. 2011. Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of european cross-breed pigs with different intramuscular fat contents. Meat Sci. 88:631-637.   DOI   ScienceOn
8 Gao, Z. Y., P. P. Lin, Y. N. Yuan, S. S. Zhou, B. F. Liu, J. H. Liu, C. Linag, L. Y. Qiao, and W. Z. Liu. 2012. Study on the polymorphism of plin gene and its association with tail and slaughter traits in sheep. J. Shanxi Agric. Univ. (Natural Science Edition) 32:158-164.
9 Gu, H. B. and Y. L. Dai. 2011. China "new generalized meaning" agricultural test lead taiwan hongbiao native chicken. Guide to Chinese Poultry 10:41-41.
10 Kern, P. A., G. Di Gregorio, T. Lu, N. Rassouli, and G. Ranganathan. 2004. Perilipin expression in human adipose tissue is elevated with obesity. J. Clin. Endocrinol. Metab. 89:1352-1358.   DOI
11 Lei, Q. X., Y. Zhou, H. X. Han, G. M. Li, D. G. Cao, F. W. Li, and Y. Lu. 2011. Polymorphism in plin gene intron 5 and its association with carcass and fatness traits in chicken. China Anim. Husb. Vet. Med. 12: 036.
12 Kimchi-Sarfaty, C., J. M. Oh, I.-W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. 2007. A" silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811):525-528.   DOI   ScienceOn
13 Kimmel, A. R., D. L. Brasaemle, M. McAndrews-Hill, C. Sztalryd, and C. Londos. 2010. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J. Lipid Res. 51:468-471.   DOI   ScienceOn
14 Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756.
15 Londos, C., C. Sztalryd, J. T. Tansey, and A. R. Kimmel. 2005. Role of pat proteins in lipid metabolism. Biochimie 87:45-49.   DOI   ScienceOn
16 Marcinkiewicz, A., D. Gauthier, A. Garcia, and D. L. Brasaemle. 2006. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J. Biol. Chem. 281:11901-11909.   DOI   ScienceOn
17 Miura, S., J.-W. Gan, J. Brzostowski, M. J. Parisi, C. J. Schultz, C. Londos, B. Oliver, and A. R. Kimmel. 2002. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, drosophila, and dictyostelium. J. Biol. Chem. 277:32253-32257.   DOI   ScienceOn
18 Morris, R. W. and N. L. Kaplan. 2002. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet. Epidemiol. 23:221-233.   DOI   ScienceOn
19 Petracci, M. and C. Cavani. 2012. Muscle growth and poultry meat quality issues. Nutrients 4:1-12.
20 Nei, M. and A. Roychoudhury. 1974. Sampling variances of heterozygosity and genetic distance. Genetics 76:379-390.
21 Rosa, M. D., A. Gambacorta, B. Nicolaus, B. Chappe, and P. Albrecht. 1983. Isoprenoid ethers; backbone of complex lipids of the archaebacterium sulfolobus solfataricus. Biochim. Biophy. Acta (BBA)-Lipids and Lipid Metabolism 753:249-256.   DOI   ScienceOn
22 Rubin, C. J., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallbook, F. Besnier, O. Carlborg, B. Bed'hom, M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587-591.   DOI   ScienceOn
23 Ruiz, J. R., E. Larrarte, J. Margareto, R. Ares, P. Alkorta, and I. Labayen. 2011. Preliminary findings on the role of PLIN1 polymorphisms on body composition and energy metabolism response to energy restriction in obese women. Br. J. Nutr. 106:486-490.   DOI   ScienceOn
24 Song, W., H. Yu, Y. Lin, K. Sun, Y. Zhang, Y. Song, R. Hui, and J. Chen. 2015. A functional variant in the exon 5 of PLIN1 reduces risk of central obesity by possible regulation of lipid storage. Biochem. Biophys. Res. Commun. 456:896-900.   DOI   ScienceOn
25 Stephens, M., N. J. Smith, and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989.   DOI   ScienceOn
26 Sun, H. J. and G. L. Wang, 2006. Study progress on the evaluation system of quality chicken meat. China Poult. 28:38-42.
27 Wang, Y., Q. Zhu, L. Yang, and Y. P. Liu. 2012. Ontogenic expression pattern and genetic polymorphisms of the fatty acid transport protein 4 (FATP4) gene in Chinese chicken populations. Int. J. Mol. Sci 13:6820-6835.   DOI   ScienceOn
28 Vaiman, D., D. Mercier, K. Moazami-Goudarzi, A. Eggen, R. Ciampolini, A. Lepingle, R. Velmala, J. Kaukinen, S.-L. Varvio, P. Martin, H. Leveziel, and G. Guerin. 1994. A set of 99 cattle microsatellites: Characterization, synteny mapping, and polymorphism. Mamm. Genome 5:288-297.   DOI
29 Wang, Y., D. Shu, L. Li, H. Qu, C. Yang, and Q. Zhu. 2007. Identification of single nucleotide polymorphism of h-fabp gene and its association with fatness traits in chickens. Asian Australas. J. Anim. Sci. 20:1812-1819.   DOI
30 Wang, Y., L. H. Xiao, X. L. Zhao, Y. P. Liu, and Q. Zhu. 2014. Identification of snps in cellular retinol binding protein 1 and cellular retinol binding protein 3 genes and their associations with laying performance traits in erlang mountainous chicken. Asian Australas. J. Anim. Sci. 27:1075-1081.   DOI   ScienceOn
31 Zhang, H. L., H. J. Fan, X. L. Liu, Y. Wu, and S. S. Hou. 2013. Molecular cloning of the perilipin gene and its association with carcass and fat traits in chinese ducks. Genet. Mol. Res. 12:1582-1592.   DOI   ScienceOn
32 Zhao, X. L., Y. P. Liu, X. S. Jiang, H. R. Du, and Q. Zhu. 2009. Association of polymorphisms of chicken adipose differentiation-related protein gene with carcass traits. J. Poult. Sci. 46:87-94.   DOI
33 Zhao, X. L., Y. P. Liu, Y. Luo, Y. Zhou, and Q. Zhu. 2009. Study on the relationship between developmental variants of plin gene expression and fatness traits in chickens. Chinese J. Anim. Vet. Sci. 40:149-154.
34 Zhou, Y., Y. P. Liu, X. S. Jiang, H. R. Du, and Q. Zhu. 2009. Study on association of single nucleotide polymorphism of mef2a gene with carcass traits in chicken. Chinese J. Anim. Vet. Sci. 8: 010.
35 Zhao, X. L., P. B. Siegel, Y. P. Liu, Y. Wang, E. R. Gilbert, Q. Zhu, and L. Zhang. 2012. Housing system affects broiler characteristics of local chinese breed reciprocal crosses. Poult. Sci. 91:2405-2410.   DOI   ScienceOn
36 Zhou, Y., Q. X. Lei, F. W. Li, J. B. Gao, W. Liu, Y. Lu, and D. G. Chao. 2014. Association on single nucleotide polymorphism of perilipin gene (PLIN) with carcass and fatness traits in luqin chicken (Gallus gallus). J. Agric. Biotechnol. 22:1002-1008.