• Title/Summary/Keyword: Penncross

Search Result 35, Processing Time 0.027 seconds

Evaluation of the Qualitative Characteristics of Creeping Bentgrass(Agrostis palustris Huds.) Cultivars Using NTEP Data (미농무성 NTEP(Nat'l Turfgrass Evaluation Program) 자료를 이용한 Creeping Bentgrass(Agrostis palustris Huds.) 품종의 특성 평가)

  • Jang, Duk-Hwan;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study was initiated to evaluate the qualitative characteristics of creeping bentgrass(Agrostis palustris Huds.) cultivars for the climate In Korea through the NTEP(Nat'l Turfgrass Evaluation Program) data. 'L-93' showed the highest rating in overall mean visual quality. It was also the most prominent cultivar in seedling vigors, ground cover, and genetic color especially in summer. In case of turf texture, 'Penn A-1' and 'A-2' were the finest group, but the poorest group in cold tolerance. Leaf density and thatch accumulation were lower with 'Penncross', 'Pennlinks', 'Crenshaw', and 'L-93' as compared with 'Penn A'-type and 'G'-type cultivars. Resistance to moss invasion was greater with 'Penn A'-type and 'G'-type cultivars, but 'Penncross' was the least. These observations indicated that leaf density was considered to associate with the characters of turf quality, thatch accumulation and resistance to moss invasion. 'Penn A'-type cultivars were highly resistant to snow mold. Greater resistance to brown patch was associated with 'Penn A' and 'Penncross'. Higher resistance to pythium blight was found with 'Penncross' and 'Pennlinks'. 'L-93' showed higher resistance to dollar spot, but not to pythium. Therefore, these results demonstrated that turf maintenance program for the new bentgrass cultivars should be different from a conventional management for the cultivar of 'Penncross'.

Comparison of Spring Growth Characteristics of Creeping Bentgrass(Agrogtis palustris Huds.) Cultivars (봄철 크리핑 벤트그래스의 품종별 특성비교)

  • Lee, Hyung-Seok;Hong, Beom-Seok;Kim, Kyung-Duck;Tae, Hyun-Sook
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • This study was initiated to evaluate the growth characteristics of creeping bentgrass cultivars during the sprlng season. The green-up of 'CY' and 'T-1' were about 2 weeks earlier than the other cultivars followed by 'Penn A' 'Crenshaw', 'L> 'Penncross' > 'Putter' > 'Dominant' > 'SR1020' in that order. 'T-1' and 'CY-2' had the highest chlorophyll content while 'Penncross' had the lowest during the spring. 'Crenshaw' and 'Penn A-4' showed the highest shoot density in this research, followed by 'CY-2', 'L-93', 'T-1', 'Putter', 'Dominant', 'SR1020', and 'Penncross' in that order. In case of root length, 'CY-2' and 'L-93' were the best cultivars, but 'Penncross' was worst during the spring. 'CY-2' had the best visual quality among the cultivars, 'T-1' and 'Crenshaw' also classified as high visual quality group whereas 'SR1020', 'Dominant' and 'Penncross' were grouped in relatively low quality. In conclusion, 'CY-2', 'T-1' and 'Crenshaw' were the best cultivars in terms of growth characteristics in spring. Conversely, 'SR1020' and 'Penncross' were the poorest cultivars. These results can be more useful for management or constructing of golf courses. However, this research was performed with little compaction stress. More information is needed on the tolerance to compaction stress of these bentgrass cultivars.

Comparison of Growth Characteristics of Creeping Bentgrass(Agrostis palustris Huds.) Cultivars in Summer (하절기 크리핑 벤트그래스의 품종별 특성비교)

  • Tae, Hyun-Sook;Lee, Hyung-Seok;An, Kil-Man;Kim, Jong-Bo
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • This study was initiated to evaluate the growth characteristics of seven creeping bentgrass cultivars in summer, 'Penncross' showed the worst visual quality, whereas 'Penn A-4' and 'Crenshaw' the best quality. 'Putter', which was maintained a fair quality during the test period, was regarded as a good cultivar because of no significant variation in summer as compared to the other caltivars. 'Crenshaw',' L-93' and 'Penn A-4' were greater in chlorophyll content and 'Penncross' lowest during the summer. Also, 'SR1020' had a low content of chlorophyll. 'Putter' greatly increased in chlorophyll content after fertilization. The highest shoot density($19.3/cm^2$) was found with 'L-93' in early August, followed by 'Crenshaw', 'Penn A-4', 'Putter', 'Dominant', and 'SR1020' in that order. However, 'Penncross' was lowest($15.7/cm^2$). As for a root length, 'L-93' was longest, being over an average 5.5cm. 'Penn A-4' and 'Putter' also showed good result in root growth. However, the root length considerably decreased with 'SR1020', 'Penncross' and 'Dominant' in summer. Brown patch was a serious disease for the most cultivars, except 'Penncross'. 'Dominant' had the most serious damage. 'Putter', 'L-93', 'Crenshaw', 'SR1020', and 'Penn A-4' were also greater in damage over the others. In regards of algae occurrence in summer, 'Penn A-4' had the least damage, while 'Dominant' the greatest. In conclusion, 'Crenshaw', 'Penn A-4' and 'L-93' were the best cultivars in terms of summer growth. Conversely, 'Penncross' was the poorest one. However, this study was conducted under the conditions of one-year old green. Accordingly, in-depth experiment should be done over several years to elucidate the characteristics of growth for the wide range of creeping bentgrass cultivars during the summer.

Effect of Growth Regulators, Carbon Sources and Silver Nitrate on Callus Formation and Plant Regeneration of Turf Grass (잔디의 캘러스 형성 및 재분화에 끼치는 식물생장조절제, 탄소원 및 AgNO3의 영향)

  • Han, S.S.;Rim, Y.S.;Jeong, J.H.
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.221-229
    • /
    • 1996
  • This study was carried out to determine the effects of growth regulators, carbon sources and silver nitrate on callus formation and plant regeneration of turfgrass. The results were summarized as fallows : Callus from Korean lawngrass (Zoysia japonica Steud.) and pencross creeping bentgrass (Agrostis palustrir Huds.) induced better in MS medium than in N6 medium and by addition of 2,4-D than by that of NAA. Callus formation from Korean lawngrass and penncross creeping bentgrass was very effective at MS medium adding 1mg/L 2,4-D and at the medium adding 2mg/L 2,4-D, repectively. Growth of callus was good at MS medium containing 2mg/L 2,4-D+0.2mg/L NAA. Callus growth of Korean lawngrass and penncross creeping bentgrass was good when kinetin was added 0.2mg/L and 0.3mg/L, individually, to MS medium containg 2mg/L 2,4-D+0.2mg/L NAA. Regeneration rate from leaf and stock callus of Korean lawngrass was 44% at MS medium adding 2,4-D 2mg/L+NAA 0.2mg/L+kinetin 0.3mg/L and 32% at the medium containing 2,4-D 2mg/L+NAA 0.2mg/L+kinetin 0.3mg/L, each and that from leaf and stock callus of penncross creeping bentgrass was 80% and 67%, each, at the medium adding 2,4-D 2mg/l+NAA 0.2mg/L+kinetin 0.3mg/L. Regeneration rate of Korean lawngrass and penneross creeping bentgrass increased by 3 to 4% and by 10 to 16%, respectively, when added $AgNO_3$ 1~2mg/L to the above-mentioned regeneration medium.

  • PDF

Influence of NaCl on Seed Germination of Cool-Season Turfgrass species (NaCl이 한지형잔디 종자발아에 미치는 영향)

  • Kang, Hoon;Lee, Chi-Won
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.2
    • /
    • pp.71-78
    • /
    • 1999
  • The influence of increasing livel (0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6, and 2.0%) fo NaCl on the germination of red fescue (Festuca rubra) 'Sea Breeze', tall fesce(Festucaarundinacea) 'Pixie', creeping red fescue (Festuca rubra ssp. rubra) 'Cindy', annual rye-grass (Lolium multiflorum) 'Permer Ⅱ', perennial ryegrass (Lolium perenne) 'Pennant', fairway wheatgrass(Agropyron cristatum), creeping bentgrass (Agrostis palustris) 'Penncross', and kentucky bluegrass (Poa pratensis) 'Nuglade' was investigated. Red fescue 'Sea Breeze', tall fescue 'Pixie', and creeping red fescue 'Cindy' had greater than 90% seed germination at NaCl concentrations of 0.2% or lower, while showing similar seeding shoot and root lengths and TAA50 values as the control. Creeping red fescue 'Cindy'gave at 0.6% or higher NaCl. Perennial ryegrass 'Pennant' and annual ryegrass 'Permer Ⅱ' showed more than 95% seed germination when NaCl concentrations were 0.4% and 0.8%, respectively. Fairway wheatgrass, creeping bentgrass 'Penncross' and Kentucky bluegrass 'Nugade' had showing similar germination percent, shoot and root lengths and T50 values as the control at NaCl concentrations of 0.1% or lower. In general, germination percent and the lengthes of seedling roots and shoots of all species tested decreased as NaCl concentrations iscreased. The T50 values became greater as NaCl concentration increased. Seed fermination in red fescue 'Sea Breeze', tall fescue 'Pixie',perennial ryegrass 'Pennant', and annual ryegrass 'Permer Ⅱ' was compoetely inhibited at 2.0% NaCl. Creeping red fescue 'Cindy' and fairway wheatgrass gardly germinated at 1.6% MaCl. Creeping bentgrass 'Penncross' and Dentucky bluegrass 'Nuglade' showed a complete inhibition of germination at 1.2% and 0.6% NaCl, respectively.

  • PDF

Growth Characteristics of Creeping bentgrass Cultivars (크리핑 벤트그래스 품종의 생육 특성)

  • 이혜원;정대영;심상렬
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.2_3
    • /
    • pp.87-97
    • /
    • 2003
  • The growth characteristics of creeping bentgrass seeded in the seaside landfill golf course are as follows. 1. As a result of analysis on the chemical characteristics of soil mixture used for turfgrass ground in this experiment, soil pH was 7.9, which is somewhat higher than the creeping bentgrass reference value of pH 5.5∼6.5; T-N(%) was 0.02, which is proper for the reference value, and trace element too lacked. 2. The cultivar with the fastest water infiltration was Seaside II recorded as 226.2cm/sec, while that with the slowest water infiltration was Pennlinks recorded as 141.1 cm/hr which was too faster than the USGA water infiltration reference value of 15∼30cm/hr. For the surface hardness of turfgrass ground with different cultivars, no statistically significant variation was found between the Penncross grass and the Pennlinks recorded as 18.6mm and 19.1 mm, respectively. The soil penetration was the highest in Pennlinks recorded as 7.6kg/$\textrm{cm}^2$ and lowest in Penn A-1 as 6.1kg/$\textrm{cm}^2$. 3. As a result of evaluation on visual quality at the early stage of growth, Penncross showed the most excellent visual quality compared to the others. However, Penn A-1 showed the most excellent visual quality at a late stage of growth around Sep. 17, 2003, and it was also excellent in the evaluation of visual color. Seaside II showed higher density around the root and the longest root length and was highly resistant to salt compared to others, but the initial sprouting rate was not satisfied, and the visual quality in the summer season was inferior to others. 4. As a result of measurement of the traffic injury, Penncross showed the most tolerant to the traffic stress and Pennlinks showed the most susceptible.

Comparison of Bentgrass Recovery Speed on Golf Green Followed by Methods of Ball Mark Repair Practise (골프장 그린의 볼마크 수리방법에 따른 벤트그래스의 회복속도 비교)

  • Park, Jong-Hwa;Lee, Jae-Phil;Kim, Doo-Hwan;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • This study was conducted to investigate a proper method of ball mark repair by comparing the creeping bentgrass recovery speed on golf course green treated by various methods of ball mark repair. Nine general repairing methods were tested and compared; control (no repair, A type), two common methods of USGA (B type) and GCSAA (C type), three methods with fork shaped hand set performing at Korean golf courses (Ansung Benest, D; Sky72, E; Lakeside, F type), and three methods using the repair machine with 6, 8, or 14 teeth (G, H, I type, respectively). Three creeping bentgrass cultivar of 'Penncross', 'T-1', and 'CY-2' were tested in this field experiment. This test was carried out from September to November in 2009 at the nursery on the Seoul Lakeside Golf course. The average speed of turfgrass recovery after various ball mark repairing methods have been ranked as in the order of E, D, C, B, F, I, H, G, and A. The methods of hand practise showed more effective results than repair method using machines. The ball mark recovery speeds of 'Penncross' were in the order of E, D, B, C, F, I, H, and A. In the case of 'T1' and 'CY-2', similar orders were showed as D, E, B, F, C, H, I, A, G and the order of D, E, C, F, B, H, G, I, A, respectively. The ball mark recovery speed among creeping bentgrass cultivar resulted in the order of 'CY-2', 'Penncross', and 'T-1'. The most proper method of ball mark repair was repair method using a hand set tool especially the method of the Sky72 Golf course (E type). At the first, remove a damaged grass area with fork and tap. And then gather the side grasses into the center area with pulling the grasses with fork. After that, make harden and flat on the turf surface by pounding and rolling with the round wooden stick. The final Nstep, water the repaired grass surface. This ball mark repairing practise showed a most rapid and proper recovery method on creeping bentgrass green.

Comparison of Seed Germinating Vigor, Early Germination Characteristics, Germination Speed and Germination Peak Time in New Varieties of The Third Generation of Creeping Bentgrass Under Different Growing Conditions (생육환경에 따른 제3세대 크리핑 벤트그래스 신품종의 종자 발아력, 초기 발아 특성, 발아세 및 발아 피크 기간 비교)

  • Kim, Kyoung-Nam;Jung, Ki-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.79-91
    • /
    • 2008
  • Research was initiated to investigate germination characteristics of creeping bentgrass (CB, Agrostis palustris Huds.). Seven varieties of CB were evaluated with different experiments. An alternative environment condition requiring for a CB germination test by International Seed Testing Association (ISTA) was applied in the Experiment I, consisting of 8-hr light at $25^{\circ}C$ and 16-hr dark at $15^{\circ}C$(ISTA conditions). Experiment II was conducted under a room temperature condition of 5 to $25^{\circ}C$(natural conditions). In each experiment, data such as seed germinating vigor, early germination characteristics, germination speed and germination peak time were measured. Significant differences were observed in seed germinating vigor, early germination characteristics, germination speed and germination peak time. Seed germinating vigor was variable with different environments and varieties. It was 61.50 to 98.25% under ISTA conditions and 55.00 to 98.50% under natural conditions. There were considerable variations in early germination characteristics among CB varieties according to different conditions. Early germination characteristics indicated that all varieties were 1 to 4 days faster in germination under ISTA conditions, when compared with natural conditions. The germination speed, measured as days to seed germination of 70% and 90%, was much faster with Penn A-1, Penn A-4 and Penncross under ISTA conditions. But it was even faster with L-93 and Penncross when grown under natural conditions. Differences were also observed in germination peak time with varieties and growing conditions. It was 0.57 to 2.86 days under ISTA conditions and 0.74 to 1.74 days under natural conditions. Regardless of the environment conditions, the shortest variety was L-93 and the longest one T-1. Considering germinating vigor, early germination characteristics, germination speed and germination peak time, Penn A-1, Penn A-4 and Penncross were regarded as excellent varieties under ISTA conditions in terms of early establishment characteristics, while L-93, Penn A-1 and Penncross under natural conditions. These results suggest that an intensive germination test be needed prior to planting, for the early germinating vigor, germination speed and germination peak time. Also, a proper variety selection and comprehensive site analysis for the growing environmental conditions should be done before golf course construction.

Comparison of the Growth Characteristics of Creeping Bentgrass (Agrostis palustris Huds.) Cultivars at Mountain Area (고산지역에서의 크리핑 벤트그래스 품종 생육특성 비교)

  • Jeong, Jun Ki;Lee, Jong Min;Kim, Ki Dong;Lee, Jeong Ho;Joo, Young Kyoo
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.283-291
    • /
    • 2013
  • This experiment was carried out for the selection of suitable cultivars on the green and fairway at the mountain area. The climate data showed that differences of altitude influenced greater than latitude on temperature and rainfall when compared with 3 areas of the central of Gyeong-gi and Yeong-seo, and the mountain area at Yeong-seo. The plot was prepared with the USGA profiles for green and modified California style for fairway at the mountain golf course in Wonju, Korea. The growth characteristics were compared on two different profiles for 3 years of growing seasons after seeding with 5 creeping bentgrass cultivars. 'T-1' and 'CY-2' showed a rapid greenup compare with other cultivars in spring of 2010 with the both green and fairway mowing height. However, 'Penncross' resulted the slowest among cultivars. 'T-1' showed the most prominent visual quality of overall rate and the deepest root length after one year of seeding, while 'Penncross' showed an excellent result of root length and weight during summer season. However, 'Penn A-1' had an imperial result in that season. Comparison of the growth characteristics under green and fairway conditions, 'T-1' and 'CY-2' showed exellent overall results at the mountain area at Yeong-seo area in Korea.

A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway (크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과)

  • 김경남;로버트쉬어만
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF