• 제목/요약/키워드: Penalty element

검색결과 133건 처리시간 0.027초

An energy-based vibration model for beam bridges with multiple constraints

  • Huang, Shiping;Zhang, Huijian;Chen, Piaohua;Zhu, Yazhi;Zuazua, Enrique
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.41-53
    • /
    • 2022
  • We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.

이종재료로 구성된 영역의 응력장 해석 개선방안 연구 (A study on the improvement method of the stress field analysis in a domain composed of dissimilar materials)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1844-1851
    • /
    • 1997
  • Displacement fields and interface stresses are obtained by modifying the potential energy functional with a penalty function which enforces the continuity of stresses at the interface of two-materials. Based on the displacement field and the interface stresses, a new methodology to generate a continuous stress field over the entire domain including the interface of the dissimilar materials has been proposed by combining the L$^{2}$ projection method of stress-smoothing and the Loubignac's iterative method of improving the displacement field. Stress analysis was carried out on two examples which are made of highly dissimilar materials. As a result of the analysis, it is found that the proposed method provides improved continuity of the stress field over the entire domain as well as predicting accurate nodal stresses at the interface. In contrast, the conventional displacement-based finite element method provides significant stress discontinuties at the interfaces. In addition, it was found that the total strain energy evaluated from the improved continuous stress field converge to the exact value as increasing the number of iterations in the proposed method.

A four-node degenerated shell element with drilling degrees of freedom

  • Kim, Ji-Hun;Lee, Byung-Chai
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.921-937
    • /
    • 1998
  • A new four-node degenerated shell element with drilling degrees of freedom (DOF) is proposed. Allman-type displacement approximation is incorporated into the formulation of degenerated shell elements. The approximation improves in-plane performance and eliminates singularities of system matrices resulted from DOF deficiency. Transverse shear locking is circumvented by introducing assumed covariant shear strains. Two kinds of penalty energy are considered in the formulation for the purpose of suppressing spurious modes and representing true drilling rotations. The proposed element can be applied to almost all kinds of shell problems including composite laminated shell structures and folded shell structures. Numerical examples show that the element is of good accuracy and of reasonably fast convergence rate.

수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구 (A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod)

  • 권영두;노권택;이창섭;홍상표
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

주름이 있는 막재료의 정적 및 동적 해석 (Static and Dynamic Analysis of Wrinkled Membranes)

  • 우경식
    • 한국항공우주학회지
    • /
    • 제33권11호
    • /
    • pp.15-23
    • /
    • 2005
  • 본 논문에서는 멤브레인 요소를 사용하여 주름이 있는 멤브레인의 정적 및 동적거동을 연구하였다. 해석은 상용유한요소 프로그램인 ABAQUS를 사용하였으며 멤브레인 요소에서 주름은 벌칙매개변수에 의한 물성치 수정 방법을 사용자 부프로그램으로 구현하여 고려하였다. 해석과정은 먼저 이론해가 멤브레인 문제에 적용하여 타당성을 검증하였고, 모서리에서 하중이 가해진 사각형 멤브레인에 대한 해석을 수행하여 주름이 정적 및 동적거동에 미치는 영향을 조사하였다.

ERROR ESTIMATE OF EXTRAPOLATED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE VISCOELASTICITY TYPE EQUATION

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.311-326
    • /
    • 2011
  • In this paper, we adopt discontinuous Galerkin methods with penalty terms namely symmetric interior penalty Galerkin methods, to solve nonlinear viscoelasticity type equations. We construct finite element spaces and define an appropriate projection of u and prove its optimal convergence. We construct extrapolated fully discrete discontinuous Galerkin approximations for the viscoelasticity type equation and prove ${\ell}^{\infty}(L^2)$ optimal error estimates in both spatial direction and temporal direction.

A PRIORI ERROR ESTIMATES OF A DISCONTINUOUS GALERKIN METHOD FOR LINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Shin, Jun-Yong;Lee, Hyun-Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권3호
    • /
    • pp.169-180
    • /
    • 2009
  • A discontinuous Galerkin method with interior penalty terms is presented for linear Sobolev equation. On appropriate finite element spaces, we apply a symmetric interior penalty Galerkin method to formulate semidiscrete approximate solutions. To deal with a damping term $\nabla{\cdot}({\nabla}u_t)$ included in Sobolev equations, which is the distinct character compared to parabolic differential equations, we choose special test functions. A priori error estimate for the semidiscrete time scheme is analyzed and an optimal $L^\infty(L^2)$ error estimation is derived.

  • PDF

영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토 (Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation)

  • 신의섭;김용언;류한열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.471-474
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

  • PDF

기능경사 내열 복합재의 체적분율 최적화에 관한 연구 (Study on the Volume Fraction Optimization of Functionally Graded Heat-Resisting Composites)

  • 조진래;하대율
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.988-995
    • /
    • 2001
  • Functionally graded materials(FGMs) are highlighted to be suitable for high temperature engineering due to their continuous distribution of material properties. In this paper, an optimal design is executed for determining the optimal material volume distribution pattern that minimizes the steady-state thermal stress of FGM heat-resisting composites. The interior penalty function method and the golden section method are employed as optimization techniques while the finite element method is used for thermal stress analysis. Through numerical simulations we suggest the volume fraction distributions that considerably improve initial thermal stress distributions.

선택적 하중/변위 파라미터를 이용한 좌굴후 현상의 유한요소 해석 (Finite Element Analysis of Post-Buckling Phenomena Using Adaptive Load/ Displacement Parameter)

  • 최진민;정윤태;윤태혁;권영두
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.503-512
    • /
    • 1990
  • 본 연구에서는 하중작용점(혹은 변위제어점)이 일점이고 스탭 백 현상이 없는 문제에 유용한 페널티 방법(penalty method)을 제안하고, 스냅 백 현상이 수반되는 경 우에는 페널티 방법과 Riks 방법을 선택적으로 취할 수 있도록 한다. 그리고 하중 작용점이 일점 혹은 그 이상의 점일 경우에 대해서는 Riks 방법을 기준으로 하되 일정 조건하에서는 새로운 증분하중 파라미터를 선택할 수 있게 하여, 순수한 Riks 방법으 로만 계산할 때에 일어날 수 있는 발산을 없앨 수 있게 한다. 끝으로 변위제어점이 일점 혹은 그 이상의 점인 경우에 대해 'Riks형 방법(Riks' type method)'을 제안하고, 이때에도 Riks형 방법을 기준으로 게산하되 일정한 조건하에서는 새로운 증분변위 파 라미터를 선택적으로 취할 수 있게 한다.