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ERROR ESTIMATE OF EXTRAPOLATED DISCONTINUOUS
GALERKIN APPROXIMATIONS FOR THE
VISCOELASTICITY TYPE EQUATION'

MI RAY OHM, HYUN YOUNG LEE* AND JUN YONG SHIN

ABSTRACT. In this paper, we adopt discontinuous Galerkin methods with
penalty terms namely symmetric interior penalty Galerkin methods, to
solve nonlinear viscoelasticity type equations. We construct finite element
spaces and define an appropriate projection of u and prove its optimal con-
vergence. We construct extrapolated fully discrete discontinuous Galerkin
approximations for the viscoelasticity type equation and prove £>°(L?) op-
timal error estimates in both spatial direction and temporal direction.
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1. Introduction

Let Q be an open bounded domain in R%, d = 2 with smooth boundary 99,
and let 0 < T < oo be given. We consider the problem of approximating the
solution u(x,t) satisfying the following nonlinear viscoelasticity type equations

uy — V- {a(u)Vu + b(u)Vu } = f(u)  in Qx (0,7T]
(a(w)Vu + b(u)Vug) -n=0 on 9Q x (0,7 (1.1)
u(z,0) = up(x), u(z,0)=uy(z) in Q

where n denotes the unit outward normal vector to 09 and wug(x), ui(x) are
given functions defined on . The initial data ug(z), ui(z), f, a and b are
assumed to be such that (1.1) admits a solution sufficiently smooth to guarantee
the convergence results to be presented below. For details about the physical
significance and various properties of existence and uniqueness of viscoelasticity
type equations, we refer to [6, 7, 8, 12, 14].
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Discontinuous Galerkin method (DGM) with interior penalty terms has been
under rapid progession recently since the DGM have the following advantages
over classical finite element method. DG methods are very well suited to han-
dling mesh adaptation, adaptive control of error and high orders of accuracy
which are essential in case that the numerical method is adopted to solve differ-
ential equations related to the area of natural science and engineering.

Early, Douglas and Dupont [5] and Wheeler [18] introduced discontinuous
Galerkin methods with interior penalties for elliptic and parabolic equations.
Darlow et al. [4] and Douglas et al. [5] applied DG method to approximate
the behavior of the flow in porous media which is not locally mass conservative.
And also Oden, Babuska and Baumann [9] adopted a new type of elementwise
conservative discontinuous Galerkin method for diffusion problem. On the other
hand, Riviere and Wheeler [13] introduced a locally conservative discontinuous
Galerkin method to approximate the solution of nonlinear parabolic equations
and proved a priori L>(L?) and L?(H?!) error estimates. Ohm, Lee and Shin
[11] developed a discontinuous Galerkin method with interior penalty terms for
nonlinear parabolic equations and obtained an optimal L°>°(L?) error estimate.
Without using Ritz projection or its modified projection Lin and Zhang [8]
proved the global superconvergence of semidiscrete Galerkin approximation of
the solution to the Sobolev equation and viscoelasticity type equation.

Recently Sun and Wheeler [17] developed a parabolic lift-technique to approx-
imate the solutions of the reactive transport problems using symmetric interior
penalty Galerkin method, nonsymmetric interior penalty Galerkin method and
incomplete interior penalty Galerkin methods and analyzed the error estimates.
Recently in [15, 16] Sun and Yang adopted the discontinuous Galerkin method
to nonlinear Sobolev equations and obtained optimal H' error estimates. In this
work we shall approximate the solution of (1.1) using a discontinuous symmetric
Galerkin method with interior penalty terms for the spatial discretization and
extrapolated Crank-Nicolson method for the temporal discretization. To obviate
the order reduction phenomenon which occurs when the system involved is non-
linear, we adopt the extrapolated technique and induce the linear systems which
can be solved explicitly. To our knowledge this paper appears to be the first trial
to construct extrapolated fully discrete approximations of viscoelasticity type
equation using discontinuous Galerkin method with symmetric interior penalty
terms and obtain the optimal convergence in £°°(L?) norm. The rest of this paper
is organized as follows. In section 2, we introduce some notations and prelimi-
naries. In section 3, we construct finite element space and introduce a modified
Ritz projection @ of the solution u of (1.1) onto finite element spaces. We prove
the optimal convergence of % to u in L? normed space and in the Sobolev spaces
of higher order. In section 4, we apply extrapolated Crank-Nicolson method to
construct fully discrete discontinuous Galerkin approximations and obtain the
optimal convergence of approximation in the £°°(L?) normed space.
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2. Notations and basis assumptions

For an integer s > 0 and a domain £ C R? with d = 2 we let H*(E) the
Sobolev space of order s equipped with the following usual Sobolev norms ||- ||,z

lalop = 3 /E DFufde

[k|<s

1

2

And we define the following usual Sobolev seminorms | - |5 g such that

1

2

luls. & = Z/|Dku|2dm
E

|k|=s

If E = Q we simply write || - ||s instead of || - ||s,o, and also we denote | - |5 instead
of | - |s,g- And for a fractional number s > 0 we also adopt the usual extension
of Sobolev space H*(E) defined on E with a fractional order s.

Let &, = {F1,Es,---,En, } be a regular quasi-uniform subdivision of
where E; is a triangle or a quadrilateral. We let h; = diam(E;) be the diameter of

FE; and we let h = max h;. We assume that &, satisfies the following regularity
St INp

condition: there exists a constant p > 0 such that each FE; contains a ball of

radius ph;. And also we assume that &, satisfies the following quasiuniformity
h

requirement: there is a constant v > 0 such that ™ <y, Vi=1,2,---, Np.

(3
Now we assume that the functions accompanying with the problem (1.1) sat-

isfy the following conditions and the solution u satisfies the following regularity
conditions:

1. there exist constants ag, a* > 0 such that 0 < a9 < a(z,u) < a*,

V(z,u) € @ xR and 0 < ag < b(z,u) < a*, V(z,u) € Q@ xR.
2. a(z,u), b(x,u), f(x,u) are continuously differentiable with respect to
each variable and there exists a constant K > 0 such that
da b of
ou|’ |ou|’ |ou
3. (1.1) has a unique solution satisfying u € L>®(H?®), u; € L>®(H?®), uy €

d
H*®, uyy € L®(L?) and ug € H® for s > B} + 1L

; . < K.

3. Finite element spaces and an auxiliary projection

For an s > 0 and a given subdivision &, we define the following space
H* (&) ={ve L*(Q) |v|g, € HY(E;), i=1,2,---,Ny}.
Let the edges of &, be denoted by {e1, €2, ,ep,,ep,+1, - -+ ,enr, } where e C
QD 1<k<P,ande, CON P, +1<k< M, With each edge ex, 1 < k < P,
we associate a unit outward normal vector ny to E; if ey, = 0E; N 0E; and @ < j.
For P, +1 < k < Mj, we define np = n the unit outward normal vector to 9f2.
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To present the dicontinuous Galerkin scheme, we need define some functions
1
on edges between two elements. For ¢ € H%(&), s > 3 we define the following

average function {¢} and the jump function [¢]:

(0} = 2 0lm)le, +
6] = (8l ex

where e, = 0E; NOE;, i < j.
We associate the following broken norms with the space H*(&), s > 1

(| )|ek, Ve €ep, 1<k<P,

(‘ )|8k’ Vmeek, 1<k< P,

l¢ll* = Z 1115, .

Nh

Io1E = > U815 5, + R IV>SlE 5,) + JE (¢, ¢)

i=1

where

Py,
Jg<¢7w>=2|6 |ﬁ/ G[glds, 5> 1
k=1

is an interior penalty term and o is a discrete positive function that takes the
positive constant o on the edge e and is bounded below by oy > 0 and above
by o* > 0.

Let r be a positive integer. The finite element space used in this paper is
taken to be

D, (&) ={v € L*(Q) :v|g, € P.(E;), j=1,2,-- ,Np}

where P,(E;) denotes the set of polynomials of total degree< r on Ej.
Throughout this paper C' denotes a positive generic constant independent of
r and h. We apply the following trace inequalities whose proofs are given in [1].
For each E; € &, there exists a positive consitive constant C' depending only
on v and p such that the two following trace inequalities hold:

1
||¢>||§,e,. <c (_|¢|3,Ej T hj|¢%,Ej) . Vee H\E)
J

1
o2 <c(ioke +nmioks, ). voemE)
where e; is an edge of E; and n; is the unit outward normal vector to E;. And
also throughout this paper, we need the following well-known Ap-approximation
properties. For the proofs of these properties, we refer to [2, 3].
Let E; € &, and ¢ € H*(E;). Then there exist a positive constant C' depend-
ing on s, 7, and p but independent of ¢, r and h and a sequence 2" € P.(E;),

O()]
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r=1, 2, --- such that for any 0 < ¢ < s,
n—q
6 = 22llg, 5, < c- Ll s >0,
A_ﬁ%
HQS_ Z:L”O,ej < CTJS7% ||¢H5EJ s>

)

l\:J\co N

¢ — 2} ll1,e, <

where g = min(r + 1, s) and e; is an edge of Ej.
Now we introduce the following bilinear mappings A(p;-,-) and B(p;-,-) de-
fined on H*(&) x H®(Ep)

A(p; ¢,9) = (alp) Ve, Vi) — Z [ {alp)Vé-mi}ly Z | {alp)Ve- ni}le)
RACKD o o

B(p; ¢,9) = (b(p)V, V) — Z RUONIC Z RUCNRBID
+J5(6,1))- o o

Now we define the following weak formulation of the problem (1.1): Find
u € H*(&) such that

(uge, v) + Au; u,v) + Blu;ug,v) = (f(u),v), Yve H*(E). (3.1)

For a A > 0 we define the following bilinear forms Ax(p;-,-) and Bx(p;-,-) on
H# (&) x H*(E) such that

Ax(p; &, ) = Alp; d,9) + M@, ¢)
Bx(p; ¢,¢) = B(p; ¢,9) + M9, ).

Ay and B, satisfy the following boundedness and coercivity properties which
are proved in [10, 11].

Lemma 3.1. For a A > 0, there exists a constant C > 0 satisfying

[Ax(p; 6, 0)| < Cliollillvll, ¥ ¢,4 € H*(En)
|Bx(p; 0, 0)| < Cligllillvlle, V¢, € H*(Er).

1 ~ .
Lemma 3.2. ForaA >0 andf > o1 there exists a constant ¢ > 0 satisfying

Ax(p;0,0) = ||9l3, V¢ € Dp(En),
Ba(pi¢,9) > € lI6lI7, V¢ € Dy(En).
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We define the following auxiliary projection by modifying the elliptic type
projection which is initiated by Wheeler [19] to approximate the Galerkin ap-
proximations to parabolic equations.

Define a projection u(t) : [0,T] — D,.(&) such that

(3.2)

Ax(u;u —u,v) + Bx(u;up — g, v) =0, YveD.(&), Vi>0,
u(0) = up(x), w(0) =u1(z) Ve

where g (z), uy(x) is appropriate projections onto D, (Er) of uo(x) and uq(z)
respectively satisfying the following approximation properties

lluo(2) — o (@) | + Alluo(x) — Go(x)lly < CH™*|ufl ;41
and
llur (z) = @1 (@)l + Allus (2) = @ (@)l < OB full1-
Now we let n(x,t) = u(z,t) — u(x,t). We state the following approximations

for n whose proofs can be found in [10].

Theorem 3.1. If u; € L*(H®) and ug € H® then there exists a constant C
independent of h satisfying

() flell + Pellmell < CR¥ (lfue[l e + [Juolls)

(i) finll + plinll < CR*([lull L2 arey + luolls)
where p = min(r + 1, s).

Theorem 3.2. If u; € L*(H®), uy € H® and ug € H*, then there exists a
constant C' independent of h such that

l7ecll + Rllmeelle < Ch* (el e + [l L2 ey + uolls)
where g = min(r + 1, s).

Throughout this paper € denotes a generic positive constant which is assumed
to be sufficiently small.

4. The convergence of extrapolated discontinuous Galerkin
approximations
To define the extrapolated discontinuous Galerkin approximations to the
T
problem (1.1) for a positive integer N we let At = N t" = nAt, tm? =

1+46 1-46
+ gl 5 t”—l,g”:g(gj7t"),0§n§]\7. Now we define

2

o 140 . 1-0 . g gt ,

3,0 — Jtl L 2 T il gl = for1<j<N-1
g B) g + B g -, Og oAt orl=jg= )
— g gt L Gt —2g7 4 gi—1
6t9]:7At for 1<j<N, 9,¢°T" = (At)? forl<j<N-L
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Now we define the following extrapolated fully discrete approximation {U™}_,
such that

(B, U7, 0) + A(EUM; U, v) + B(EUM; 0,U7, v) = (f(U),v)

U° =z, 0) = to(x) (4.1)
— At

(atUlvv) = (Vlvv) + 7(‘/27’”)

where EU7Y = (1 +0)U’7 — U=, V; is L?-projection of u; = u(0) and V3 is
L2-projection of V - (a(ug)Vug + b(ug)Vui) + f(uo) = us(0).

By applying Taylor’s expansion, we can easily obtain the results of the fol-
lowing Lemmas.

Lemma 4.1. For 1< j < N —1, if we let 479 = u(t/?) —u?? then

(1) fO’I" 0= 1; m’}/J’:m =0 andQ‘”,}Lj,G” =0 ’ .
(i) for® =0, |7l < C(AD) JustllLoe L2y and [ 7]l < CAD [wst]| Lo -y -

Lemma 4.2. For 1< j <N —1 if we let p?? = 0, (t7%) — 0,07, then
(i) for 0 =1, Ip"°]l < CAtl[ure]|po(r2) and [|p"°]l1 < CAt et oo )
(it) for0 =0, [p7°] < C(A)[TillLoe(r2) and [|p"P Iy < CAL) [Tssell Loo () -

Lemma 4.3. If we let 079 = @, (t79) — Efﬂjﬂ then
(i) for =1, |”U]:’e | < CAussellpoe (z2),
(ii) for & =0, [lo*’| < C(A)* [eerell o= (r2)-

Lemma 4.4. For 1< j < N —1 if we let o/ = u(t/?) — B0 then

(i) for 0 =1, [la” |l < (At)*|[ibsell o= (r2).

(ii) for & =0, [la’’] = 0 and a?’]; = 0.

To proceed the error analysis now we let e” = u(x,t") — U™, " = u(x,t") —
Um(x).
1

Theorem 4.1. If 0 < A < 1, At = O(h) and 8 = T then there ezists a
constant C' > 0 independent of h and At such that for j=1,2, ---, N

(i) 0 =1, Ju(t;) — U'lle=(r2) < C(h* + At) and

(i) if 0 =0, llu(t;) — U7 le=(z2) < C(R* + (A1)?),

where u = min(s,r + 1).
Proof. From (1.1) and (4.1) the following holds
(e (t0) = iU 0) 4+ Ax(u(tP0); u(t), v) — A (BUP U9, v)
+ Ba(u(t?); uy (t77),v) — BA(EU??;0,U7 ,v) (4.2)
= (f(u(t?)),v) = (f(BU??),0) + A(u(t?) = U, 0) + A, (t"7) — 0,07, v).
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From the definition of 7, v and ¢ we have the followings
ANt u(t"?),v) = ANEUHUT, 0)
= An((t?); (%), 0) + Ax(u(t?); a(t"’) — @, ) (4.3)
+ Ax(u(@?); u(t70),v) — AN(BUP? 500 v) + AN(BUT? 670 ),

By (u(t??); u(t9),v) — B\(EU??;0,U7 ,v)
= BA(EU??; 8¢, v) + Ba(u(t);0,(t7), 0)
+ B (u(t?); 0 (t7%) — 0,3, v) + Ba(u(t”?); 9,0’ ,v)
— BA(EU?: 0,37 | v).
By substituting (4.3) and (4.4) into (4.2), we obtain the following

(4.4)

(D641 v) + AN(BUH; €39 ) + By (BUM; 9,67, v)
— (me(#7),0) = (077, 0) = Ax(u (tj’e)-vj’e v) — Ax(u(t?); @7, )
+ AN(BEU?: 09 v) — By (u(t??); p7% v) — By (u(t??); 0,0, v) (4.5)
+ BA(EU?Y; 0,07, 0) + (f(u(t?)) — (EU“ ),v)
+ AMu(?) = U v) + Au(t77) — 9,U7, v).
By the definition of A,, we have
AN(BUM 9, 0,¢7)
Py

> (a(BUP )V Vo) =Y | {a(BUP)VE -y} 0,8

k=1"¢k

, , Y .
-5 qaEvine V@) -] + 50 (E,6) + 5001,

k=1"¢k

By simple computation we have
o . . 1 _ .
@i, 087) = 50:00:67 P
BA(BU?; 0,87 ,0) > Cllon& |13
We take v = 0;£7 in (4.5) to obtain the following error equation
1= = 1 . A , ,
0BT + 5000(8,€) + SN + 2o I}
< C( (e (87), 047) — (07, 0,67) — Ax(u(t"?);77%, 0€7)
- A)\ (u(tj70)7 ﬂj797 atgj) + A)\ (EUJ,G, ﬂj’ga 8tgj) - BA (u(tj70)7 pjﬂ) atgj)
— B)\ (’U,(tj’e); 8tﬂj, atgj) + B)\ (EUj’e; 8t17j, 8t§j)
+ (f(u(t"?)) = fF(EUP?),0,67) + Mu(t??) = U, 8¢)
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+ AMug(890) — 8,U7, 8,67) +Z {a(BUPYVE . }[0,¢7]

k=1"¢k
+Z {a(BUP)V(0,67) - mi } 6]
k=1"¢k
+a Ve IVaE)
which implies the following
5t||\5t£j“\ll2 + 1€+ J5E, ) + 107117
C(— () + 07, 0,8)
—AA( (t); 70, 0u87)
— A\(u(tP?); @ 0,87 ) + AN(EU ;00 0,67))
— Ba(u(t"?); p"?,0,87)
— (BA(u(t?%); 8,07, 0,67) + BA(EU?; 8,17, 0,€7))
+ (fu(t™?) = f(EUP),0,87)
F M) + 970 + €0 40, (70) + 970 + 8,67, 0,87))
+Z/ {a(BUIOYWE - ny}[0,87)]

klek

Z EUM)V(0,87) - i } €]

klek

+a |VE Vo)

319

Obviously, for sufficiently small € > 0, there exists a constant C' > 0 such that

L] < Clllme (@) + Mo ) 118:€7 |
< C(llnee (@O) + Mo 1?) + ellog” I
12| = ClAN(u(#?);77, 0,87)| < CIVPIIE + ello? I3

We can separate I3 as follows

13| = [((a ( (7)) = a(BUP)) Vi ?, ¥ (8:¢7))]

Z{ (")) = a(BUM) Vi - ny }[0,€7]
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Py,

+ 1D {a(u(t)) — a(BUH)V(0,87) - n ) [i5)
k=1

Igj

M-

Il
—

J

and estimate I3;, 1 <4 < 3 in the followings
Is1 < CIIVﬂj’(’IIoo(\Ilﬂ(tj’e)l\l + eI + 171 + \Ilé“j_lllo IV (271l

< C7<||\77(tj"9)\||2 + a2 + 171 + |||§j*1|\|2) +ello Iy

Py,

Iy < C_ [V oo, (ImE ) lo.e + 10" floer + 1€ loer + 167 e
k=1
10 o e
Np
< O IVE o2 (It o, + BIVE ) o,5, + la?lo,5.
i=1
+ 1€ llo, + €7 o, ) /20068

< C(IH??(tj’g)HI2 + R V)17 + flo? |17 + €71 + |||€j‘1\||2) +elog It

O,ek)

0,e, T ng”(),ek + ng_1|

Py
I5 < C 3 (90 1oy (0l 0 + |0
k=1
i)
Nh

< CY IV O oo 2 (In(E7) o5, + BIV0E o5 + 10 o,
=1

0,ex

+ €7

0.B; ||§j_1||0,Ei> 'h_l/Q(HTIj’eHo,Ei + hHan’gHo,Ei)
Ny,
. ,
< ChETE Y V(@0 o,

=1

0.8+ 1E7) - REF () gy

< C(In( )1 + RIVnE )P + I + JEN + 1€ 07) + <10, 12

Nt 0,5, + bIVHE ) oz, + o7 llo.,

+1¢7)

Therefore we obtain

T3] < C’(III??(V’@)HI2 + R V)17 + fla?|

2+ 102 + M) + 3elone? .
And

Ll < Cle" IR + <l o€ |13
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To estimate I5, we split I5 into the following 3 terms

15| < [((b(u(t"?)) = b(EU))V (9,7, Vg

S [ (b)) — (EUI) V(@) - i} [0:]

k=1"¢k

_|_

S [ () - bEU)V(@rET) - i} [0

Now we estimate I5;, 1 < i < 3 in the followings

I51] < ClIV(84) (Illn(tj’e)lll + e + €7 + Hlﬁj‘llll) 19:€7]l:

< C (Il + 112 + 1712 + 1€ 12) + ellog I3,
Ph

T3] < €SIVl (119 e, + [0
k=1

(110" Mo.e.
< C‘(\Iln(tj"))l\l2 + R V)1 + fla? )7 + €712 + |||£j’1|\|2) +elag I,

ocs + 1€ lo.ex + 1€ o.cr)

Py

s3] < © 3" IV @& ooscn (197 o,y + 107 ey + 1€ 0. + 16 o
k=1

[loa]]
Np,

< CY IV @& oo™ (In(t) o, + BlIVH ()

i=1

O,(i]c

0.8 + o’

lo,E;

187 o, + 167 Nous, ) - (I lo,, + BIZm () o, + hllo™ 1 )

Np,
< Ch™E YV o, (||77(?fj’9)||0,Ei + bV ) o, + [l”[lo.&,

i=1
17, + 167 o,z ) - (R e gy + Bllo™ I )
< C(In@ ) + RITnE )2 + 0?1 + 1€ 1 + 1€ 1) + 1o’ .

Summing the estimations of I5;, 1 < i < 3 then gives

15| < C(III??(“’")HI2 + RV 17 + flo? I + 171 + Hlfj‘lll\Q) +3ello€ 1.
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Similarly we obtain the estimations of Ig~1I7g as follows

s < C(IIIn(tj’a)IIIQ + eI + 17N + |||€j’1||\2) +ellag’ It
17| < C(Illn(tj’9)|||2 I+ DEIP + e (7O + W™ 17 + 19267 |1

+ 1971 + ellone’ I

Py,
5| < C Y IVE o 110 lloer. < CUVEIP + el
k=1
Dh . . Nn . . .
1] < C Y IV o, 1E Moer. < C D NIV (0L )lo,, T (677,671
k=1 =1

< CIZ(E,67°) +ellog I}
Lol < a*IVE IV < CIVE|? + el a:g” I
< CUIVET? + IVETPY + ellog’ I}

J
< ALY N0 NP + IVE ]+ elloe I3

=1

Substituting the estimations of I;, 1 < i < 10 into (4.6), we get

DO + 0 (I + J5 (€1, €0)) + 101

< C{Inu@ O + W12 + 13 + )P + B2 ITnE O + o)
IR + T2 + 7S + ()N + 87+ P + 19ig P
I+ IVEE + IVE T + TR ) + 5 (e )
J

+ AL IO + IVED -
{=1

R ~ 1, .

|11 — 1B 1) + S (U712 — 1 1P)

1 , A o :
+SUEE ) — I3 10 1}
< C{In@ )2 + IVE P + I @I + I @O + 1070 (@4.7)

+ 03 4+ D12 + 107003 + 10:7THI2 + 110:67 117 + I1E7 1% + 1€ )12
FNETHP + IVETP + IVE P + 5@ ) + I (¢ e

J
+ ALY 0 + IV
(=1
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By summing the both sides of (4.7) from j =1 to N — 1, we conclude
_ — 1 _ o
1817 — 9. 1> + 3 (HIéNHI2 HIENTH — NN — M) + TE (€N, €Y)

N-1
FIGENTLENTY) = 5 (€0,€0) — J5 (€L, €N) + ALY 10

Jj=1

N-1
( (llln NP + B2 IV @ + e (O + I (12 + 0?0112
j=1

N
+IIE + + IIIPNIII?) +IVE + (At) Z lo:¢711”

N-1 J
LAy (I IV 4 5(E.€) + A Y a3 1 €rr).

j=0 j=1 (=1

which implies

N-1
10N + CIEV I + IVEN I + T (€™ €M) + At S 10’1
j=1
<UD + C(UEI + UEM2 + IVE N + JF(€°,€°) + TG (€1, €Y + IVE°I?)
N-1
+ A" (W) + B2AFn(E )12 + ()2 + e (27
j=1
+ 102 + 013 + | 2) + oAty 198N
j=1
N-1
+CAt Z (h702 + IV + J5(60,€)) + Cat Y At Z o1
Jj=0 Jj=0 =1

By applying the discrete type Gronwall’s Lemma we have

N-1
0:6™* + (HI€NHI2 +HIVENI? + T5(EN, €M) + At Y a3
j=1
N-1
_ 1 .
<10 + 5 (KNP + IVEI? + 5 (€1, €1) + CAL Y {Il\n(tj’e)lll2
j=1
+ RV )P+ e ()12 + e (8701 + IO

+ o)

02
1 .
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Since (9;U',v) = (V1,v) + %(Vg,v) and (4.1) we have

At

(0:£1,0) = (04t ,v) — (0:UY,v) = (94, v) — (Vi,v) — 7(utt(0),v). (4.8)
Now we let v = 0;£! in (4.8) to get
B = (3t~ a(0) ~ Sta(0), 36"
= (T w0 - Sue.5)
= () + 5L 700) — () - S + B ). 3,61
= (— (0 + 50) + B wr5).57).

which implies the following

19:6' < C(In () + Atlnet ()1l + (A)?)

€'l = NAtd.e'] < CAt(HIm(O)HI + Atfn: ()] + (At)Z) (4.9)

IV€ ) = ntietl < Cn (a0 (In O + At ()] + (A1?)

< C(ImO)ll + Atllmea )] + (A1)?).
By combining the results of (4.9), the definition of J§ and the condition that

1
b= 1 we have

T5(€1,€) < ClE'R < (IOl + (A0 (0) + (At)*).

Therefore we have the estimation of ¢! as follows

I + Ve + 75 (67,6 + 19 I

(4.10)
< C (IO + (A0l (O)I + (A)*).
Consequently if § = 1, then
10N + N1 + IVEN I + T3 (€N, 6N) + At Y [[0:7]IF < C(h** + (At)?)
j=1
and if # = 0, then
16N + MNP + IVEN I + T5 (€N, €V) + At Y 0.3
j=1

< C(h* + (At)Y).
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Thererfore we have the following results

C(h* + At) if6=1

%) 2 <
lelle (r2) < C(h* + (AD)?)  if6=0

where g = min(r + 1, s). O
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