Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.1.041

An energy-based vibration model for beam bridges with multiple constraints  

Huang, Shiping (School of Civil Engineering and Transportation, South China University of Technology)
Zhang, Huijian (School of Civil Engineering and Transportation, South China University of Technology)
Chen, Piaohua (School of Civil Engineering and Transportation, South China University of Technology)
Zhu, Yazhi (Department of Structural Engineering, Tongji University)
Zuazua, Enrique (Dynamics, Control and Numerics, Alexander von Humboldt-Professorship, Department of Data Science, Friedrich-Alexander-Universitat Erlangen-Nurnberg)
Publication Information
Structural Engineering and Mechanics / v.82, no.1, 2022 , pp. 41-53 More about this Journal
Abstract
We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.
Keywords
beam bridge; bridge vibration; multiple constraints; natural frequency; vibration mode;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Vargas, D.E., Lemonge, A.C., Barbosa, H.J., Bernardino, H.S. (2019), "Differential evolution with the adaptive penalty method for structural multi-objective optimization", Optimiz. Eng., 20(1), 65-88. https://doi.org/10.1007/s11081-018-9395-4.   DOI
2 Edwards, R.E. (2012), Fourier Series: A Modern Introduction, Springer Science & Business Media, Berlin, Germany.
3 Welch, P. (1967), "The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Tran. Audio Electroacoust., 15(2), 70-73. https://doi.org/10.1109/tau.1967.1161901.   DOI
4 Wilbur, J.B. (1948), Elementary Structural Analysis, McGraw-Hill International Book Company, New York, NY, USA.
5 Weaver Jr, W., Timoshenko, S.P. and Young, D.H. (1990), Vibration Problems in Engineering, John Wiley & Sons, Hoboken, NJ, USA.
6 Hughes, T.J. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, N Chelmsford, MA, USA.
7 Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/s0141-0296(96)00149-6.   DOI
8 Dallard, P., Fitzpatrick, A., Flint, A., Le Bourva, S., Low, A., Ridsdill Smith, R. and Willford, M. (2001), "The london millennium footbridge", Struct. Eng., 79(22), 17-33.
9 Cooley, J.W., Lewis, P.A. and Welch, P.D. (1969), "The fast fourier transform and its applications", IEEE Tran. Edu., 12(1), 27-34. https://doi.org/10.1109/TE.1969.4320436.   DOI
10 Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I. (1992), "Image coding using wavelet transform", IEEE Tran. Image Proc., 1(2), 205-220. https://doi.org/10.1109/83.136597.   DOI
11 Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P. and Zhu, J. (1977), The Finite Element Method, McGraw-Hill, New York, NY, USA.
12 Saibel, E. (1944), "Vibration frequencies of continuous beams", J. Aeronaut. Sci., 11(1), 88-90. https://doi.org/10.2514/8.11101.   DOI
13 Bertsekas, D.P. (2014), Constrained Optimization and Lagrange Multiplier Methods, Academic press, New York, NY, USA.
14 Culver, C. and Oestel, D. (1969), "Natural frequencies of multispan curved beams", J. Sound Vib., 10(3), 380-389. https://doi.org/10.1016/0022-460x(69)90216-8.   DOI
15 Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Hoboken, NJ, USA.
16 Memory, T., Thambiratnam, D. and Brameld, G. (1995), "Free vibration analysis of bridges", Eng. Struct., 17(10), 705-713. https://doi.org/10.1016/0141-0296(95)00037-8.   DOI
17 Zhou, Y.J., Zhao, Y., Liu, J. and Jing, Y. (2021), "Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge", Struct. Eng. Mech., 77(3), 343-354. https://doi.org/10.12989/sem.2021.77.3.343.   DOI
18 AASHTO, L. (2012), Aashto lrfd Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington, DC, USA.
19 Spencer Jr, B., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: Opportunities and challenges", Struct. Control Hlth. Monit., 11(4), 349-368. https://doi.org/10.1002/stc.48.   DOI
20 El Gamal, A. and Eltoukhy, H. (2005), "Cmos image sensors", IEEE Circuit. Devic. Mag., 21(3), 6-20. https://doi.org/10.1109/mcd.2005.1438751.   DOI
21 Yu, L.P. and Pan, B. (2017), "Single-camera high-speed stereo-digital image correlation for full-field vibration measurement", Mech. Syst. Signal Pr., 94, 374-383. http://doi.org/10.1016/j.ymssp.2017.03.008.   DOI
22 Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis", Proc. Roy. Soc. London. Ser. A: Math. Phys. Eng. Sci., 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193.   DOI
23 Kolousek, V. (1941), "Anwendung des gesetzes der virtuellen verschiebungen und des reziprozitatssatzes in der stabwerksdynamik", Ingenieur-Archiv, 12(6), 363-370. https://doi.org/10.1007/bf02089894.   DOI
24 Ryall, M.J., Hewson, N., Parke, G. and Harding, J. (2000), The Manual of Bridge Engineering, Thomas Telford, London, UK.
25 Jaeger, L.G. and Bakht, B. (1982), "The grillage analogy in bridge analysis", Can. J. Civil Eng., 9(2), 224-235. https://doi.org/10.1139/l82-025.   DOI
26 Lu, P.Z., Zhang, J.P., Zhao, R.D. and Huang, H.Y. (2009), "Theoretical analysis of Y-shape bridge and application", Struct. Eng. Mech., 31(2), 137-152. https://doi.org/10.12989/sem.2009.31.2.137.   DOI
27 Zhu, J., Wang, W., Huang, S. and Ding, W. (2020), "An improved calibration technique for mems accelerometer-based inclinometers", Sensor., 20(2), 452. https://doi.org/10.3390/s20020452.   DOI
28 Parlett, B.N. (1998), The Symmetric Eigenvalue Problem. Siam, Philadelphia, PA, USA.
29 McCormac, J.C. and Elling, R.E. (1988), Structural Analysis: A Classical and Matrix Approach, Harper & Row, New York, NY, USA.
30 Huang, Y., Gan, Q., Huang, S. and Wang, R. (2018), "A dynamic finite element method for the estimation of cable tension", Struct. Eng. Mech., 68(4), 399-408. https://doi.org/10.12989/sem.2018.68.4.399.   DOI
31 Humar, J. (2012), Dynamics of Structures, CRC Press, Boca Raton, FL, USA.
32 Sun, Y., Dai, S.C., Xu, D., Zhu, H.P. and Wang, X.M. (2020), "New extended grillage methods for the practical and precise modeling of concrete box-girder bridges", Adv. Struct. Eng., 23(6), 1179-1194. https://doi.org/10.1177/1369433219891559.   DOI
33 Song, M.K. and Fujino, Y. (2008), "Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction", Struct. Eng. Mech., 29(4), 355-380. https://doi.org/10.12989/sem.2008.29.4.355.   DOI
34 Zeng, Z.P., He, X.F., Zhao, Y.G., et al. (2015), "Random vibration analysis of train-slab track-bridge coupling system under earthquakes", Struct. Eng. Mech., 54(5), 1017-1044. https://doi.org/10.12989/sem.2015.54.5.1017.   DOI