• Title/Summary/Keyword: Pedestrian Model

Search Result 305, Processing Time 0.019 seconds

A Study on Comparison of Improved Floor Field Model and Other Evacuation Models (개선된 Floor Field Model과 다른 피난시뮬레이션 모델의 비교 연구)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.41-51
    • /
    • 2016
  • In this study, we propose an improved Floor Field Model(FFM) that considers the physical characteristics of pedestrians, i.e., body size, shape, and posture. Also we analyse limits of FFM and features of improved model compared with existing evacuation simulation models. FFM is a typical microscopic pedestrian model using CA, but it does not reflect the physical characteristics of pedestrians. Because of this, FFM is difficult to modeling phenomena such as collision, friction between pedestrians. As a result, FFM calculates a very short evacuation time when compared with the other models. We performed a computational experiment to compare improved model with other models such as FFM, Simulex, Pathfinder in an actual campus building. We carried out a comparison of evacuation aspect according to the change in number of evacuees. Also we compared evacuation aspect by exit. Finally, we confirmed that improved model reflects physical phenomena which were not reflected in FFM. Especially, experimental results were very similar to the Simulex.

The Effect of Weather and Season on Pedestrian Volume in Urban Space (도시공간에서 날씨와 계절이 보행량에 미치는 영향)

  • Lee, Su-mi;Hong, Sungjo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.56-65
    • /
    • 2019
  • This study empirically analyzes the effect of weather on pedestrian volume in an urban space. We used data from the 2009 Seoul Flow Population Survey and constructed a model with the pedestrian volume as a dependent variable and the weather and physical environment as independent variables. We constructed 28 models and compared the results to determine the effects of weather on pedestrian volume by season, land use, and time zone. A negative binomial regression model was used because the dependent variable did not have a normal distribution. The results show that weather affects the volume of walking. Rain reduced walking volume in most models, and snow and thunderstorms reduced the volume in a small number of models. The effects of the weather depended on the season and land use, and the effects of environmental factors depended on the season. The results have various policy implications. First, it is necessary to provide semi-outdoor urban spaces that can cope with snow or rain. Second, it is necessary to have different policies to encourage walking for each season.

Analysis-based Pedestrian Traffic Incident Analysis Based on Logistic Regression (로지스틱 회귀분석 기반 노인 보행자 교통사고 요인 분석)

  • Siwon Kim;Jeongwon Gil;Jaekyung Kwon;Jae seong Hwang;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.15-31
    • /
    • 2024
  • The characteristics of elderly traffic accidents were identified by reflecting the situation of the elderly population in Korea, which is entering an ultra-aging society, and the relationship between independent and dependent variables was analyzed by classifying traffic accidents of serious or higher and traffic accidents of minor or lower in elderly pedestrian traffic accidents using binomial variables. Data collection, processing, and variable selection were performed by acquiring data from the elderly pedestrian traffic accident analysis system (TAAS) for the past 10 years (from 13 to 22 years), and basic statistics and analysis by accident factors were performed. A total of 15 influencing variables were derived by applying the logistic regression model, and the influencing variables that have the greatest influence on the probability of a traffic accident involving severe or higher elderly pedestrians were derived. After that, statistical tests were performed to analyze the suitability of the logistic model, and a method for predicting the probability of a traffic accident according to the construction of a prediction model was presented.

Design of Information Appliances Based on User's Preference - in the Case of Information Retrieval Method for Pedestrians' Navigation - (정보기기 디자인에 있어서 사용자의 감성을 고려한 콘텐츠 개발방법 - 보행자의 이동지원을 목적으로 한 감성정보검색을 사례로 -)

  • Kim, Don-Han
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.203-214
    • /
    • 2007
  • This study proposes an information retrieval method reflecting the user's preferences based on the fuzzy set theory to develop information contents which support pedestrian's navigation. Firstly, the research evaluated subjects' preferences on commercial spaces set to a hypothetical destination. Also it surveyed the causal relationship between the visual characteristics and the emotional characteristics to propose methods of Navigation Knowledge Base (NKB). The NKB was composed of three elements; 1. the correlation model between emotional characteristics, 2. the causal relationship between visual characteristics and emotional characteristics, 3. the transformation model between visual characteristics and the physical characteristics. Secondly, this study classified the pedestrian's destination search into 4 types with his or her preferences and the time conditions limited during navigation. For each type it presented the Destination Search Algorithm (DSA). Finally, the research simulated the destination search in 4 navigation types using NKB and DSA and verified the availability of the information retrieval method reflecting pedestrian's preferences. In conclusion, the proposed information search method will be applied to reflect the user's preferences to develop information appliances.

  • PDF

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

Measurements of pedestrian's ioad using smartphones

  • Pan, Ziye;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.771-777
    • /
    • 2017
  • The applications of smartphones or other portable smart devices have dramatically changed people's lifestyle. Researchers have been investigating useage of smartphones for structural health monitoring, earthquake monitoring, vibration measurement and human posture recognition. Their results indicate a great potential of smartphones for measuring pedestrian-induced loads like walking, jumping and bouncing. Smartphone can catch the device's motion trail, which provides with a new method for pedestrain load measurement. Therefore, this study carried out a series of experiments to verify the application of the smartphone for measuring human-induced load. Shaking table tests were first conducted in order to compare the smartphones' measurements with the real input signals in both time and frequency domains. It is found that selected smartphones have a satisfied accuracy when measuring harmonic signals of low frequencies. Then, motion capture technology in conjunction with force plates were adopted in the second-stage experiment. The smartphone is used to record the acceleration of center-of-mass of a person. The human-induced loads are then reconstructed by a biomechanical model. Experimental results demonstrate that the loads measured by smartphone are good for bouncing and jumping, and reasonable for walking.

Gaussian Interpolation-Based Pedestrian Tracking in Continuous Free Spaces (연속 자유 공간에서 가우시안 보간법을 이용한 보행자 위치 추적)

  • Kim, In-Cheol;Choi, Eun-Mi;Oh, Hui-Kyung
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.177-182
    • /
    • 2012
  • We propose effective motion and observation models for the position of a WiFi-equipped smartphone user in large indoor environments. Three component motion models provide better proposal distribution of the pedestrian's motion. Our Gaussian interpolation-based observation model can generate likelihoods at locations for which no calibration data is available. These models being incorporated into the particle filter framework, our WiFi fingerprint-based localization algorithm can track the position of a smartphone user accurately in large indoor environments. Experiments carried with an Android smartphone in a multi-story building illustrate the performance of our WiFi localization algorithm.

A Study on Light Weight Hood Design for Pedestrian Safety (보행자 충돌안전 경량후드 형상설계에 관한 연구)

  • Lee, Won-Bae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.106-115
    • /
    • 2007
  • In this study, first, child headform model was built up, satisfying requirement in the headform validation test. Also, for decreasing both acceleration peak and deformation, a new hood with dome shaped forming in inner panel was investigated. Next, headform impact, complying with draft of EEVC W/G 17, on the central portion of the newly proposed hood were simulated for a steel hood and three aluminum hoods with different thickness for examining the material and thickness effect on HIC value and inner panel deformation. The analysis results explained that aluminum hoods with dome shaped forming in inner panel were highly promising not only for meeting headform safety regulations but also for leading to weight savings. Finally, hood edge design technology in order to reduce pedestrian injury due to the high stiffness of beam type edge and the rigid support, was discussed. Various types of the foam filled edge were designed and their headform safety performance were evaluated. The edge structure with foam filled in upper one third of section exhibited excellent results.

Logistic Regression Accident Models by Location in the Case of Cheong-ju 4-Legged Signalized Intersections (사고위치별 로지스틱 회귀 교통사고 모형 - 청주시 4지 신호교차로를 중심으로 -)

  • Park, Byung-Ho;Yang, Jeong-Mo;Kim, Jun-Young
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • The goal of this study is to develop Logistic regression model by accident location(entry section, exit section, inside intersection and pedestrian crossing section). Based on the accident data of Chungbuk Provincial Police Agency(2004$\sim$2005) and the field survey data, the geometric elements, environmental factor and others related to traffic accidents were analyzed. Developed models are all analyzed to be statistically significant(chi-square p=0.000, Nagelkerke $R^2$=0.363$\sim$0.819). The models show that the common factors of accidents are the traffic volume(ADT), distant of crossing and exclusive left turn lane, and the specific factors are the minor traffic volume(inside intersection model) and U-turn of main road(pedestrian crossing model). Hosmer & Loineshow tests are evaluated to be statistically significant(p$\geqq$0.05) except the entry section model. The correct classification rates are also analyzed to be very predictable(more than 73.9% to all models).

  • PDF

Microscopic Evacuation Simulation in Large-scale Buildings using EgresSIM (EgresSIM을 이용한 대형건축물의 미시적 대피시뮬레이션)

  • Kwak, Suyeong;Nam, Hyunwoo;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • This paper introduces 'EgresSIM', which is microscopic evacuation simulation software. EgresSIM developed in this paper is a three-dimensional (3D) pedestrian evacuation simulator based on the improved model advanced from the floor field model(FFM), a microscopic pedestrian model. This software can simulate large size buildings that consist of a number of floors, stairs, rooms, and exit doors. Moreover, this software can arrange several hundreds or thousands of pedestrians in indoor space and check their movements through the 3D viewer in real time, as well as produce detailed results about evacuation situations such as which paths are employed by individual pedestrians, how long does it takes to evacuate, and how many evacuees are gathered at each of the exit doors. Building data needed in the simulation are constructed as XML files according to pre-defined indoor data models and information of simulation results is also created as XML log files. A moving pattern of pedestrians can be represented in many ways by adjusting the sensitivity parameters of two walk models supported by EgresSIM. Thus, evacuation simulation can be done based on many assumptions of situations such as movement to the nearest exit door or blackout after outage.