• Title/Summary/Keyword: Peak wavelength

Search Result 530, Processing Time 0.26 seconds

Characterization of Blue Organic Light Emitting Diodes using TPM-BiP (TPM-BiP 청색 형광 재료의 전계발광특성)

  • Chang, Ji-Geun;Shin, Sang-Baie;Ahn, Jong-Myoung;Chang, Ho-Jung;Lee, Hak-Min;Gong, Myoung-Sun;Kim, Min-Young;Kim, Jun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.11-14
    • /
    • 2007
  • For the fabrication of blue color organic light emitting diodes(OLED) with a high performance, 2-TNATA [4,4',4"-tris (2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB [N,N'-bis (1-naphthyl) -N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by the vacuum thermal evaporation. After then, blue color emission layer was deposited using TPM-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl)phosphonate] and GDI602 as a light emitting organic material. Finally, the two kinds of OLEDs with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al and ITO/2-TNATA/NPB/GDI602/Alq_3/LiF/Al$ were prepared by in-situ deposition. The maximum current density and luminance were found to be about $588\;mA/cm^2\;and\;5239\;cd/m^2$ at 12V for the OLED sample with the structure of $ITO/2-TNATA/NPB/TPM-BiP/Alq_3/LiF/Al$. Color coordinate of blue OLED was x=0.18, y=0.18 (at llV) and the maximum current efficiency was 2.82 cd/A (at 6V) with the peak emission wavelength of 440 nm.

  • PDF

Electrical and Structural characteristics of ITO thin films deposited under different ambient gases (분위기 가스에 따른 ITO 박막의 전기적 및 구조적 특성)

  • Heo, Ju-Hee;Han, Dae-Sub;Lee, Yu-Lim;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.7-11
    • /
    • 2008
  • ITO (Indium Tin Oxide) thin films have been extensively studied for OLED devices because they have high transparent properties in the visible wavelength and a low electrical resistivity. These ITO films are deposited by rf-magnetron sputtering under different ambient gases (Ar, Ar+$O_2$ and Ar+$H_2$) at $300^{\circ}C$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon has been changed from 0.5sccm to 5sccm and from 0.01sccm to 0.25sccm respectively. The resistivity of ITO film increased with increasing flow rate of $O_2$ under Ar+$O_2$ while it is nearly constant under Ar+$H_2$. And the peak of ITO films obtained (222) and (400) orientations and the average transmittance was over 80% in the visible range. The OLED device fabricated with different ITO substrates made by configuration of ITO/$\alpha$-NPD/Alq3/LiF/Al to elucidate the performance of ITO substrate for OLED device.

  • PDF

Realization of High Impedance Surface Characteristics Using a Periodically Transformed Artificial Magnetic Conductor Structure and Reduction Technique of Specific Absorption Rate

  • Lee, Seungwoo;Rhee, Seung-Yeop;Kim, Pan-Yeol;Kim, Nam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • We developed a transformed, symmetrical, mushroom-like surface without via holes in cells focused on a 2.4-GHz WLAN band. Each slot in the novel type structure plays a key role in modeling at the desired frequencies. The designed artificial magnetic conductor (AMC) has several advantages, including a small size, a wider bandwidth, a short reflecting distance to the antenna, and easy fabrication because there are no via holes. Overall dimensions of the AMC cell are 21 mm $(Width){\times}21mm$ $(Height){\times}2.6mm$ (Thickness), and the bandwidth is about three times wider (11.7%) compared to that of a conventional AMC (4.0%). For evaluating the performance of the proposed structure, a reflector, which periodically consists of the designed AMC cells, was developed. The antenna with the investigated AMC reflector not only works within a quarter of the wavelength because of the extremely high wave impedance generated by the AMC cells on the surface of the structure but also reduces the specific absorption rate (SAR). Electromagnetic field (EMF) exposure to a human phantom was analyzed by applying the designed reflector to the 2.4-GHz dipole antenna in a tablet PC. The calculated peak SAR averaged over 1 g was 0.125 W/kg when the input power was 1 W and the antenna was located at 20 cm from the human phantom. However, the SAR value was only 0.002 W/kg (i.e., 98.4% blocked) when the designed reflector was inserted in front of the antenna.

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

Property change of organic light-emitting diodes due to an ITO surface reformation (ITO 표면 개질에 의한 유기 발광 소자의 특성 변화)

  • Na, Su-Hwan;Joo, Hyun-Woo;An, Hui-Chul;Lee, Suk-Jae;Oh, Hyun-Suk;Min, Hang-Gi;Kim, Tae-Wan;Lee, Ho-Sik;Lee, Won-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.411-412
    • /
    • 2008
  • We have studied a property change of organic light-emitting diodes (OLED) due to an indium tin oxide (ITO) surface reformation. The characteristics of OLED were improved by oxygen plasma processing of an ITO in this work. ITO is widely used as a transparent electrode in light-emitting devices, and the OLED device performance is sensitive to the surface properties of the ITO. The OLED devices with the structure of ITO/TPD(50nm)/$Alq_3$(70nm)/LiF(0.5nm)/Al(100nm) were fabricated, and the surface properties of ITO were investigated by using various characterization techniques. The oxygen plasma process of an ITO was processed by using RF power of 125W and oxygen partial pressure of $2\times10^{-2}$ Torr. The oxygen plasma processing of an ITO processed for 0/1/2/3/4min. Current-voltage-luminance characteristics of the devices show that turn-on voltage is 4V for 2min device and the luminance reaches about 27,000cd/$m^2$ for 4min device. The current efficiency shows that 3min device becomes saturated to be about 8cd/ A. They show that emission was from the $Alq_3$ layer, because the peak wavelength is about 525nm. View angle-dependent emission spectra show that the emission intensity decreases as the angle increases.

  • PDF

Growth of ZnO Thin films Depending on the Substrates by RF Sputtering and Analysis of Their Microstructures (기판의 결정구조에 따른 RF 스퍼터링 ZnO 박막의 성장과 미세구조 분석)

  • Yoo In-Sung;So Soon-Jin;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.461-466
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5 N. The ZnO thin films were in-situ annealed at $600^{\circ}C$ in $O_2$ atmosphere. The thickness of ZnO thin films has implemented about $1.6{\mu}m$ at SEM analysis after in-situ annealing process. We have investigated the crystal structure of substrates, and so structural properties of ZnO thin films has estimate by using XRD, FWHM, FE-SEM and AFM. XRD and FE-SEM showed that ZnO thin films grown on substrates had a c-axis preferential orientation in the [0001] crystal direction. XPS spectra showed that ZnO thin film was showed a peak positions corresponding to the O1s and the Zn2p. As form above XPS, we showed that the atom ratio of Zn:O related 1:1.1504 on ZnO thin film, so we could obtained useful information for p-type ZnO thin film.

The characteristics of tilted grating in depressed- and step- index fiber and its application (Depressed index type과 Step index type 광섬유에서의 경사진 브래그격자 특성과 응용)

  • 권서원;이상배;최상삼;박진우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.83-91
    • /
    • 1998
  • Fiber Bragg grating which has a blazed ang1e to the plane of incident wave generates a side-mode as well as main-mode. The side-mode has an identical characteristics with a long period grating that couples with a cladding mode, so rejects the special wavelength. We experimented on the side-mode characteristics with two fibers which Ge doped depressed index fiber and very high photosensitive H$_2$ loaded step index fiber according to the tilted angle. Also, using a phase mask equipped with rotation plate which has 0.02$^{\circ}$ resolution, we can control the bandwidth and the peak value of a total loss spectrum by aligned tilted grating in a fiber and using this, tried to compose the ASE band rejection filter of the Erbium doped fiber amplifier.

  • PDF

Structural and Optical Properties of CuS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장시킨 CuS 박막의 구조적 및 광학적 특성)

  • Shin, Donghyeok;Lee, SangWoon;Son, Chang Sik;Son, Young Guk;Hwang, Donghyun
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • CuS (copper sulfide) thin films having the same thickness of 100nm were deposited on the glass substrates using by radio frequency (RF) magnetron sputtering method. RF powers were applied as a process variable for the growth of CuS thin films. The structural and optical properties of CuS thin films deposited under different power conditions (40-100W) were studied. XRD analysis revealed that all CuS thin films had hexagonal crystal structure with the preferential growth of (110) planes. As the sputtering power increased, the relative intensity of the peak with respect to the (110) planes decreased. The peaks of the two bands (264cm-1 and 474cm-1) indicated in the Raman spectrum exactly matched the typical spectral values of the covellite (CuS). The size and shape of the grains constituting the surface of the CuS thin films deposited under the power condition ranging from 40W to 80W hardly changed. However, the spacing between crystal grains tended to increase in proportion to the increase in sputtering power. The maximum transmittance of CuS thin films grown at 40W to 80W ranged from 50 % to 51 % based on 580nm wavelength, and showed a relatively small decrease of 48% at 100W. The band gap energy of the CuS thin films decreased from 2.62eV (at 40W) to 2.56eV (at 100W) as the sputtering power increased.

Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique (다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법)

  • Lee, Joo Hyeon;Lee, Jae Joon;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.

Studies on Structure and Optical Characteristics of TiO-N Thin Film Manufactured by DC Reactive Magnetron Sputtering Method (DC 마그네트론 반응성 스퍼터링법에 의해서 제작된 TiO-N 박막의 구조 및 광학적특성에 관한 연구)

  • Park Jang Sick;Park Sang Won;Kim Tae Woo;Kim Sung Kuk;Ahn Won Sool
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.6
    • /
    • pp.307-312
    • /
    • 2004
  • Extensive efforts have been made in an attempt to utilize photocatalytic properties of $TiO_2$ in visible range. $TiO_2$ and TiO-N thin films were made by the DC reactive magnetron sputtering method at $300^{\circ}C$. Various gases (Ar, $O_2$ and $N_2$) were used and Ti target was impressed by 0.6 kW-5.8 kW power range. The hysteresis phenomenon of the $TiO_2$ thin film as a function of the discharge voltage characteristic was observed to be higher as applied power increases. That of TiO-N thin film was occurred at the 5.8 kW power. The cross section and surface roughness of thin films were observed by FE-SEM and AFM. Average surface roughness of TiO-N thin film was observed as $15.9\AA$ and that of $TiO_2$ as $13.2\AA$. The crystal phases of both $TiO_2$ and TiO-N thin films were found to be anatase structure. The atomic $\beta$-N (396 eV peak in N 1s XPS) was shown in the rutile crystal of TiO-N and was considered acting as the origin of wavelength shift to the visible light.