Browse > Article
http://dx.doi.org/10.5695/JKISE.2020.53.1.9

Structural and Optical Properties of CuS Thin Films Grown by RF Magnetron Sputtering  

Shin, Donghyeok (School of Materials Science and Engineering, Pusan National University)
Lee, SangWoon (School of Materials Science and Engineering, Pusan National University)
Son, Chang Sik (Division of Materials Science and Engineering, Silla University)
Son, Young Guk (School of Materials Science and Engineering, Pusan National University)
Hwang, Donghyun (Division of Materials Science and Engineering, Silla University)
Publication Information
Journal of the Korean institute of surface engineering / v.53, no.1, 2020 , pp. 9-14 More about this Journal
Abstract
CuS (copper sulfide) thin films having the same thickness of 100nm were deposited on the glass substrates using by radio frequency (RF) magnetron sputtering method. RF powers were applied as a process variable for the growth of CuS thin films. The structural and optical properties of CuS thin films deposited under different power conditions (40-100W) were studied. XRD analysis revealed that all CuS thin films had hexagonal crystal structure with the preferential growth of (110) planes. As the sputtering power increased, the relative intensity of the peak with respect to the (110) planes decreased. The peaks of the two bands (264cm-1 and 474cm-1) indicated in the Raman spectrum exactly matched the typical spectral values of the covellite (CuS). The size and shape of the grains constituting the surface of the CuS thin films deposited under the power condition ranging from 40W to 80W hardly changed. However, the spacing between crystal grains tended to increase in proportion to the increase in sputtering power. The maximum transmittance of CuS thin films grown at 40W to 80W ranged from 50 % to 51 % based on 580nm wavelength, and showed a relatively small decrease of 48% at 100W. The band gap energy of the CuS thin films decreased from 2.62eV (at 40W) to 2.56eV (at 100W) as the sputtering power increased.
Keywords
Covellite; CuS thin film; RF magnetron sputtering; deposition power; solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.J. Diliegros-Godines, D.I. Lombardero-Juarez, R. Machorro-Mejia, R. Silva Gonzalez, Mou Pal, Electrical properties and spectroscopic ellipsometry studies of covellite CuS thin films deposited from non ammoniacal chemical bath, Opt. Mater. 91 (2019) 147-154.   DOI
2 F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Influences of substrate type on the pH sensitivity of CuS thin films EGFET prepared by spray pyrolysis deposition, Mater. Sci. Semicond. Process. 63 (2017) 269-278.   DOI
3 M.D. Khan, M.A. Malika, J. Akhtar, S. Mlowe, N. Revaprasadu, Phase pure deposition of flower-like thin films by aerosol assisted chemical vapor deposition and solvent mediated structural transformation in copper sulfide nanostructures, Thin Solid Films. 638 (2017) 338-344.   DOI
4 N. Schneider, D. Lincot, F. Donsanti, Atomic layer deposition of copper sulfide thin films, Thin Solid Films. 600 (2016) 103-108.   DOI
5 Y.B. He, A. Polity, I. Osterreicher, D. Pfisterer, R. Gregor, B.K. Meyer, M. Hardt, Hall effect and surface characterization of Cu2S and CuS films deposited by RF reactive sputtering, Phsica B. 308-310 (2001) 1069-1073.   DOI
6 F. Ghribi, A. Alyamani, Z. Ben Ayadi, K. Djessas, L. EL Mir, Study of CuS Thin Films for Solar Cell Applications Sputtered from Nanoparticles Synthesised by Hydrothermal Route, Energy Procedia. 84 (2015) 197-203.   DOI
7 A.L. Patterson, The Scherrer Formula for I-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982.   DOI
8 B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, Raman spectra of thin solid films of some metal sulfides, J. Mol. Struct. 410 (1997) 267-270.   DOI
9 S.Y. Wang, W. Wang, Z.H. Lu, Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x = 1, 2) thin films, Mater. Sci. Eng. B 103 (2003) 184-188.   DOI
10 J. Tauc, R. Grigorovici, A. Vancu, A. Optical properties and electronic structure of amorphous germanium, Phys. Stat. Sol. 15 (1966) 627-637.   DOI
11 C. Lai, M. Lu, L. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, J. Mater. Chem. 22 (2012) 19-30.   DOI
12 A.K. Sahoo, P. Mohanta, A.S. Bhattacharyy, Structural and optical properties of CuS thin films deposited by thermal co-evaporation, IOP conf. Ser.: Mater. Sci. Eng. 73 (2015) 012123.   DOI
13 M. Adelifard, H. Eshghi, M.M. Bagheri Mohagheghi, Comparative studies of spray pyrolysis deposited copper sulfide nanostructural thin films on glass and FTO coated glass, Bull. Mater. Sci. 35 (2012) 739-744.   DOI
14 H.S. Sanchez Rangel, A. Carrillo Castillo, J.F. Hernandez Paz, J.R. Farias Mancilla, H. Camacho Montes, P.E. Garcia Casillas, C.A. Martinez Perez, C.A. Rodriguez Gonzalez, Synthesis of copper sulfide (CuS) thin films by a solid-vapor reaction, Chalcogenide Lett. 12 (2015) 381-387.
15 C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, L. Chen, Direct growth of high-rate capability and high capacity copper sulfidenanowire array cathodes for lithium-ion batteries, J. Chen, J. Mater. Chem. 20 (2010) 6638-6645.   DOI
16 I. Puspitasari, T.P. Gujar, K.D. Jung, O.S. Joo, Simple chemical preparation of CuS nanowhiskers, Mater. Sci. Eng. B. 140 (2007) 199-202.   DOI
17 F. Di Benedetto, M. Borgheresi, A. Caneschi, G. Chastanet, C. Cipriani, D. Gatteschi, G. Pratesi, M. Romanelli, R. Sessoli, First evidence of natural superconductivity: covellite, Eur. J. Mineral. 18 (2006) 283-287.   DOI
18 X. Chen, Z. Wang, X. Wang, R. Zhang, X. Liu, W. Lin, Y. Qian, Synthesis of novel copper sulfide hollow spheres generated from copper (II)-thiourea complex, J. Cryst. Growth. 263 (2004) 570-574.   DOI
19 Y. Xie, G. Bertoni, A. Riedinger, A. Sathya, M. Prato, S. Marras, R. Tu, T. Pellegrino, L. Manna, Nanoscale transformations in covellite (CuS) nanocrystals in the presence of divalent metal cations in a mild reducing environment, Chem. Mater. 27 (2015) 7531-7537.   DOI
20 L. De Trizio, L. Manna, Forging colloidal nanostructures via cation exchange reactions, Chem. Rev. 116 (2016) 10852-10887.   DOI
21 S. Lindroos, A. Arnold, M. Leskela, Growth of CuS thin films by the successive ionic layer adsorption and reaction method, Appl. Surf. Sci. 158 (2000) 75-80.   DOI
22 M.I. Medina-Montes, E. Campos-Gonzalez, M. Morales-Luna, T.G. Sanchez, M. Becerril-Silva, S.A. Mayen-Hernandez, F. de Moure-Flores, J. Santos-Cruz, Development of phase-pure CuSbS2 thin films by annealing thermally evaporated CuS/Sb2S3 stacking layer for solar cell applications, Mater. Sci. Semicond. Process. 80 (2018) 74-84.   DOI