• Title/Summary/Keyword: Payload Fairing(PLF)

Search Result 10, Processing Time 0.02 seconds

Structural test of KSLV-I Payload fairing (KSLV-I 페이로드 페어링 구조시험)

  • Lee, Jong-Woong;Kong, Cheol-Won;Eun, Se-Won;Nam, Gi-Won;Jang, Young-Soon;Shim, Jae-Yeul;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.900-907
    • /
    • 2013
  • Payload fairing(PLF) protects satellites and related equipment from the external environment. They are separated before the satellite separation. Payload fairing made of composite sandwich materials due to their considerable bending stiffness and strength-to-weight ratio. Payload fairing have compression, shear and bending load during the flight. In this study, To check the strength of PLF and connected part, structural test of PLF accomplished using an actuator and a fixture. Purpose of structural test is to verify the strength of PLF in force of separation spring and combination structural load applied. Test result shows that the PLF have an acceptable margin of safety for the combination structural load and force of separation spring.

Pyroshock Prediction of the Satellite Launch Vehicle at the Payload Fairing Separation (인공위성 발사체 노즈페어링 분리 시 구조물의 충격량 예측)

  • Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon;Lee, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.250-253
    • /
    • 2005
  • This paper is investigates the separation shock of payload fairing. Separation test of subscale PLF using half separation device and half PLA is performed. Resulting shock loads at equipment bay and fairing joint are measured. Pyroshock estimation is performed using AUTOSEA Pyroshock Module. Input data to analysis model is obtained from the separation test results of subscale PLF. And model of AUTOSEA is updated comparing results between tests and analysis.. This enables us to validate the AUTOSEA model. Tuned model of subscale PLF and separation device is used to update full scale model, and the shock analysis result of full scale model is estimated in this paper. This paper also discusses the results regarding the difficulty of structural modeling and its numerical implementation in AutoSEA2 Software.

  • PDF

FLOW ANALYSIS OF THE ON-BOARD SYSTEM FOR THE AIR SUPPLY TO THE PAYLOAD FAIRING OF A LAUNCH VEHICLE (발사체 탑재물 페어링 내부 공기 공급을 위한 탑재 시스템 유동 해석)

  • Ok H.;Kim Y.;Kim I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.269-273
    • /
    • 2005
  • The on-board system for the air supply to the payload fairing(PLF) of a launch vehicle using both high and low pressure air was designed. The design concept was obtained from the CFD analysis of a Russian interstage air supply system, and a collector was adopted to expand the high pressure air. To verify that the on-board system would work as designed, a simplified axisymmetric computational model was made and a CFD analysis was also performed. It was found that the flow ejected from the hole of the collector expands to the Mach number of 4 and is soon retarded due to the action of viscosity. It was also found that a small gap between the low pressure duct and equipment bay wall can cause large velocity in PLF over the velocity requirement and no gap should be allowed in the design.

  • PDF

PRELAUNCH THERMAL ANALYSIS OF KSLV-I PAYLOAD FAIRING

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.356-359
    • /
    • 2004
  • Prelaunch thermal analysis of the KSLV (Korea Space Launch Vehicle)-I PLF (Payload Fairing) was performed to predict maximum/minimum liftoff temperatures and to evaluate of air conditioning performance. Prelaunch thermal analysis includes internal air conditioning effect, external convective heating/cooling, radiation exchange with the ground and sky, radiation between spacecraft and PLF, and solar radiation incident on PLF. Analysis was performed at two extreme conditions, hot day condition and cold day condition. The results showed that the maximum liftoff temperature was $53^{\circ}C$ and the minimum liftoff temperature was $-3.8^{\circ}C$. It was also found that conditioned air supplying, in $20{\pm}2^{\circ}C\;and\;1200\;m^3/hr$, is sufficient to keep the internal air in required temperature range.

  • PDF

Prediction of the Dynamic Derivatives of Separated Payload Fairing Halves by the CFD Analysis of Forced Harmonic Motions (강제조화운동 전산유동해석을 통한 분리된 페어링 동안정 미계수 예측)

  • Kim, Yeong-Hun;Ok, Ho-Nam;Kim, In-Seon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A review has been made on what kind of method can be applied to predict the dynamic derivatives of the separated PLF(Payload Fairing) halves of a launch vehicle in consideration of technology and budget. An optimal approach is selected considering the geometric characteristics of the PLF halves, the aerodynamic conditions and the required accuracy. The time history of aerodynamic force/moment coefficients are obtained for the forced harmonic motions by solving the unsteady Euler equations derived with respect to the inertial reference frame. and the dynamic derivatives are deduced by integration of the aerodynamic coefficients for one period. In this research, the dynamic derivatives are presented for 0.6$\leq$ M $\leq$2.0, $-180^{\circ}$ $\leq$$\alpha$ $\leq$$180^{\circ}$ and $-90 ^{\circ}$$\leq$$\beta$$\leq$$90 ^{\circ}$.

  • PDF

Development of a Vent Analysis Method for Multiple Compartments Connected Through Multiple Ports (다중 Port로 연결된 다중 격실 Vent 해석 기법 개발)

  • Ok, Ho-Nam;Kim, In-Sun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.547-550
    • /
    • 2006
  • An analysis method is developed for the prediction of venting in multiple compartments which are connected in series or parallel through multiple ports. The existing method by the authors is modified to remove the limitation in number of ports and compartments, and the more general polytropic relation or solution of the additional energy equation replaces the previous isentropic relation allowing the prediction of pressure rise in addition to pressure drop. The accuracy of the method is verified by comparison with the results by NASA Flap code for the problem of pressure drop in a payload in the Space Shuttle cargo bay. It is expected that this method will be a useful tool in prediction of the pressure variation in a payload or payload capsule without mentioning the payload fairing itself.

  • PDF

Acoustic Test of KSLV-I PLF Acoustic Protection System (KSLV-I PLF 음향 하중 저감 시스템의 성능 검증을 위한 음향 시험)

  • Park, Soon-Hong;Seo, Sang-Hyeon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • Acoustic test was performed to verify the ability of KSLV-I PLF acoustic protection system (Acoustic blanket) to reduce the acoustic load. The test results showed that the acoustic protection system has +3 dB safety margin compared with design requirement. This paper also illustrates the increase of insertion loss by the acoustic protection system by comparing that of the bare PLF structure.

  • PDF

Acoustic Load Reduction in the Payload of Small Launch Vehicle by using Resonators (공명기를 이용한 소형위성발사체 탑재부의 음향하중 저감)

  • Seo, Sang-Hyeon;Jeong, Ho-Kyeong;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.234-237
    • /
    • 2007
  • To protect a satellite and electronic equipment from the acoustic load generated by rocket propulsion system, many launch vehicle use acoustic blanket. Acoustic load is main source of random vibration working on the payload. Most high frequency region of the acoustic loads is reduced by payload fairing skins and acoustic blanket, but low frequency region is not. In order to reduce acoustic load of low frequency region, we designed array resonator panel which was made of composite materials. Insertion loss capacity of the payload fairing with acoustic blanket was verified from PLF acoustic test in the acoustic chamber.

  • PDF

발사전 가열 해석 - Delta II 자료 분석

  • Choi, Sang-Ho;Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.126-134
    • /
    • 2005
  • Before the launch, launch vehicle is set up a few days ago at launch pad to check process and to supply fuels, etc. During the prelaunch process, the payload is exposed to the thermal environments. The purpose of a prelaunch thermal analysis is to predict maximum/minimum liftoff temperature of payload fairing and to evaluate air conditioning performance. The prelaunch thermal analysis of Delta II PLF is performed using Sinda/fluint, general thermal/fluid analyzer. The results are analyzed and compared with Delta II report.

  • PDF

Modal Test of the 2nd stage structure of KSLV-I (KSLV-I 2단부 구조체 모드 시험)

  • Seo, Sang-Hyeon;Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.114-119
    • /
    • 2007
  • This paper introduces modal test of the 2nd stage structure of KSLV-I which is composed to satellite, PLA(Payload Adapter), EB(Equipment Bay), KMS(Kick Motor Support) and KM(Kick Motor) without PLF(Payload Fairing). In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer. From this test, dynamic properties of the 2nd stage structure of KSLV-I can be obtained. Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of KSLV-I were identified.

  • PDF