• Title/Summary/Keyword: Pathogen-related gene

Search Result 130, Processing Time 0.03 seconds

Species-specific Marker of Phytophthora pinifolia for Plant Quarantine in Korea (국내 식물검역대상 Phytophthora pinifolia의 PCR 검출을 위한 종 특이적 마커 개발)

  • Kim, Narae;Choi, You Ri;Seo, Mun Won;Song, Jeong Young;Kim, Hong Gi
    • The Korean Journal of Mycology
    • /
    • v.44 no.2
    • /
    • pp.103-107
    • /
    • 2016
  • To establish a rapid and accurate detection of Phytophthora pinifolia, which is a quarantine pathogenic fungus in Korea, a species-specific primer was developed based on the ras-related protein (Ypt1) gene. Species-specific primer based on the DNA sequences of Ypt1 gene amplified 193 bp polymerase chain reaction (PCR) product for P. pinifolia. The primer pair yielded the predicted PCR product size exactly in testing with target pathogen DNAs, but not from the other 10 species of Phytophthora and 14 species of other phytopathogenic fungi. The primer pair also showed only the species-specific amplification curve on realtime PCR on target pathogen DNA. The detection sensitivity of real time PCR using species-specific primer pair was 10 to 100 times higher than conventional PCR, with 1 to $10pg/{\mu}L$.

Studies on a PR4 Gene for Breeding Disease Resistant Forage Crops (내병성 목초 품종개량을 위한 PR4 유전자의 연구)

  • Cha, Joon-Yung;Ermawati, Netty;Jung, Min-Hee;Kim, Ki-Yong;Son, Dae-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.241-248
    • /
    • 2007
  • Cytokinins are essential plant hormones that play crucial roles in various aspects of plant growth and development. By using mRNA differential display, we isolated a cytokinine-inducible cDNA encoding pathogenesis-related (PR) 4 from Arabidopsis amp1 mutant. The full-length PR4 cDNA, designated AtPR4, contains an open reading frame of 212 amino acids with calculated molecular mass of 22,900 Da and isoelectric point (pI) of 7.89. Genomic DNA blotting showed that the Arabidopsis genome has one copy of AtPR4. AtPR4 mRNA was induced by cytokinin and NaCl, but decreased by SA or JA treatment. PR proteins are induced in response to pathogen attack. Thus the AtPR4 gene isolated in this study may be a useful candidate for genetic engineering of forage crops for increased tolerance against pathogen.

Isolation and Characterization of Pathogen inducible Leucine Zipper containing Gene from rice (Oryza sativa L. cv. Dongjin)

  • Park, Sang-Ryeol;Song, Hae-Sook;Moon, Kyung-Mi;Hwang, Duk-Ju;Kim, Tae-Ho;Han, Seong-Sook;Go, Seung-Joo;Byun, Myung-Ok
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.83.2-83
    • /
    • 2003
  • A full length cDNA, OsLEUZIP, encoding leucine zipper containing protein from rice EST of rice (0ryza sativa L. cv. Dongjin) treated Xanthomonas oryzae pv. oryzae 10331. OsLEUZIP contains 1,227 bp nucleotides and encodes a protein of 408 amino acid residues with predicted molecular weight of 47,229 Da. The deduced amino acid sequence of OsLEUZIP has consensus sequence of leucine zipper from PROSITE (PDOC00029), L-X(6)-L-X(6)-L-X(6) -L. OsLEUZIP gene were preferentially induced in rice during incompatible interaction with Xanthomonas oryzae pv. oryzae 10331 and Pyracuraria grisea KJ-301. Expression of OsLEUZIP gene was also induced by treatment of abiotics such as ethephon and ABA. Our data represented in this study suggesting that OsLEUZIP gene may play an important role in the rice defense-related. Further studies of this gene, overexpression in rice, yeast-two hybrid assay, electrophoretic mobility shift assay and northern blot analyses of transgenic plant, would be useful to elucidate the role of the OsLEUZIP gene in defense responses of rice.

  • PDF

Gene Analysis of A Fruit-specific Thaumatin-like Protein, VVTL1-homolog, from Campbell Cultivar of Grape (포도 캠벨 품종으로부터 과육 특이발현 VVTL1-homolog 유전자의 분석)

  • 김인중;김석만
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.255-261
    • /
    • 2001
  • Vitis vinifera thaumatin-like protein (VVTL1) is a fruit-specific and ripening-related protein in grape. In order to isolate VVTL1-homolog gene and fruit-specific promoter from Campbell cultivar, we isolated a genomic clone containing VVTL1-homolog gene from grape genomic library through plaque hybridization. VVTL1-homolog gene has an intronless genomic structure, which the pattern is matched with those of other PR5 genes such as osmotin and osmotin-like protein genes. Transcription start site was determined by primer extension analysis. The promoter region of VVTL1-homolog gene contains a sequence or structure, especially the location and number of TCA box and ABRE (abscisic acid-responsive element), distinct from other reported plant PR5 genes, though with several known functional elements such as a TATA box and CAAT box. These results suggested that VVTL1-homolog gene may be regulated by a plant hormone, abscisic acid, and one or several stresses such osmotic pressure and pathogen infection. The isolation of fruit-specific promoter may be helpful to breed a genetically modified grape with valuable phenotype or materials in fruits.

  • PDF

Structural Analysis of Repeated Tomato Phenylalanine Ammonia-Lyase Gene (PAL X1, PAL X2) (반복배열된 토마토 phenylalanine ammonia-Iyase(p AL X1, PAL X2) 유전자의 구조해석)

  • Lee, Shin-Woo;Yeo, Yun-Soo
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • We observed the structure of phenylalanine ammonia-lyase gene (PAL) which is one of the best studied plant defense-related genes responding to pathogen infection by producing suberin, lignin, and phytoalexins. In tomato, at least 5 different genetic loci have been identified by genomic southern blot hybridization and nucleotide sequence analyses of partially cloned gene fragments (Lee et al. 1992). However, our results suggest that two other isoforms designated as PAL X1 and PAL X2 are located on the chromosome in tomato plant. Furthermore, the preliminary results obtained from southern blot hybridization analyses of subcloned fragment digested with several restriction endonuclease indicated that PAL X1 and PAL X2 clones contain at least two copies of PAL gene and partial nucleotide sequence analyses of each subcloned fragment with the same primer taken from known nucleotide sequence of PAL5 gene indicated that they are located side by side on the same chromosome.

  • PDF

Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

  • Amruta, Narayanappa;Kumar, M.K. Prasanna;Puneeth, M.E.;Sarika, Gowdiperu;Kandikattu, Hemanth Kumar;Vishwanath, K.;Narayanaswamy, Sonnappa
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.126-138
    • /
    • 2018
  • Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant's rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides.

Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

  • Islam, Md. Zaherul;Yun, Hae Keun
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.347-356
    • /
    • 2016
  • Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), Vf-CXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, Vf-CXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.

Fungal pathogen protection in transgenic lettuce by expression of a apoptosis related Bcl-2 gene (Apoptosis 관련 Bcl-2유전자의 도입을 통한 곰팡이 저항성 형질전환 상추의 육성)

  • Seo, Kyung-Sun;Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • Transgenic lettuce plants were successfully obtained from hypocotyl explants inoculated with Agrobacterium tumefaciens, which harbored a binary vector plasmid with Bcl-2 gene, related to apoptosis. After culture and selection on MS medium a number of kanamycin-resistant plantlets were regenerated. Polymerase chain reaction, Southern blot analysis and Northern blot analysis were used to identify and characterize the transgenic plants with the integrated Bcl-2 gene. Over 100 transgenic plants have been established in soil and flowered in the greenhouse. T1 progeny of 100 transgenic lettuce inbred lines were inoculated with Sclerotinia sclerotiorum. Expression of the Bcl-2 peptide in transgenic lettuce plants provides high levels of field resistance against Sclerotinia sclerotiorum, causal agent of the agronomically important fungal disease of lettuce.

A Gene-Tagging System for Monitoring of Xanthomonas Species

  • Song, Wan-Yeon;Steven W. Hutcheson;Efs;Norman W. Schaad
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.137-143
    • /
    • 1999
  • A novel chromosomal gene tagging technique using a specific fragment of the fatty acid desaturase-like open reading frame (des-like ORF) from the tox-argK gene cluster of Pseudomonas syringae pv. phaseolicola was developed to identify Xanthomonas spp.released into the environment as biocontrol agents. X. campestris pv. convolvuli FB-635, a pathogen of Convolvulus arvensis L., (bindweed), was chosen as the organism in which to develop and test the system. A 0.52 kb DES fragment amplified from P. syringae pv. phaseolicola C-199 was inserted into pGX15, a cosmid clone containing a 10.3 kb Eco RI-HindIII fragment derived from the xanthomonadin biosynthetic gene cluster contained in plasmid pIG102, to create a pigG::DES insertion. The 10.8 kb EcoRI-BamHI fragment carrying the pigG:: DES insertion was cloned into pLAFR3 to generate pLXP22. pLXP22 was then conjugated into X. campestris pv. convolvuli FB-635 and the pigG::DES insertion integrated into the bacterial chromosome by marker exchange. Rifampicin resistant, tetracycline sensitive, starch hydrolyzing, white colonies were used to differentiate the marked strain from yellow pigmented wild-type ones. PCR primers specific for the unique DES fragment were used for direct detection of the marked strain. Result showed the marked strain could be detected at very low levels even in the presence of high levels of other closely related or competitive bacteria. This PCR-based DES-tagging system provides a rapid and specific tool for directly monitoring the dispersal and persistence of Xanthomonas spp.released into the environment.

  • PDF

Validation and Application of a Real-time PCR Protocol for the Specific Detection and Quantification of Clavibacter michiganensis subsp. sepedonicus in Potato

  • Cho, Min Seok;Park, Duck Hwan;Namgung, Min;Ahn, Tae-Young;Park, Dong Suk
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least $1.47{\times}10^2copies/{\mu}l$ of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or $10^{-6}$ dilution point of 0.12 at $OD_{600}$ units of cells per reaction using a calibrated cell suspension.