A Gene-Tagging System for Monitoring of Xanthomonas Species

  • Song, Wan-Yeon (Foreign Disease-Weed Science Research Unit, USA) ;
  • Steven W. Hutcheson (Department of Cell Biology and Molecular Genetics, University of Maryland, USA) ;
  • Efs (Foreign Disease-Weed Science Research Unit, USA) ;
  • Norman W. Schaad (Foreign Disease-Weed Science Research Unit, USA)
  • Published : 1999.06.01

Abstract

A novel chromosomal gene tagging technique using a specific fragment of the fatty acid desaturase-like open reading frame (des-like ORF) from the tox-argK gene cluster of Pseudomonas syringae pv. phaseolicola was developed to identify Xanthomonas spp.released into the environment as biocontrol agents. X. campestris pv. convolvuli FB-635, a pathogen of Convolvulus arvensis L., (bindweed), was chosen as the organism in which to develop and test the system. A 0.52 kb DES fragment amplified from P. syringae pv. phaseolicola C-199 was inserted into pGX15, a cosmid clone containing a 10.3 kb Eco RI-HindIII fragment derived from the xanthomonadin biosynthetic gene cluster contained in plasmid pIG102, to create a pigG::DES insertion. The 10.8 kb EcoRI-BamHI fragment carrying the pigG:: DES insertion was cloned into pLAFR3 to generate pLXP22. pLXP22 was then conjugated into X. campestris pv. convolvuli FB-635 and the pigG::DES insertion integrated into the bacterial chromosome by marker exchange. Rifampicin resistant, tetracycline sensitive, starch hydrolyzing, white colonies were used to differentiate the marked strain from yellow pigmented wild-type ones. PCR primers specific for the unique DES fragment were used for direct detection of the marked strain. Result showed the marked strain could be detected at very low levels even in the presence of high levels of other closely related or competitive bacteria. This PCR-based DES-tagging system provides a rapid and specific tool for directly monitoring the dispersal and persistence of Xanthomonas spp.released into the environment.

Keywords