• Title/Summary/Keyword: Pathogen-related gene

Search Result 130, Processing Time 0.037 seconds

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

  • Jeon, Eun-Hee;Chung, Eun-Sook;Lee, Hye-Young;Pak, Jung-Hun;Kim, Hye-Jeong;Lee, Jai-Heon;Moon, Byung-Ju;Jeung, Ji-Ung;Shin, Sang-Hyun;Chung, Young-Soo
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.

Expression of hpa1 Gene Encoding a Bacterial Harpin Protein in Xanthomonas oryzae pv. oryzae Enhances Disease Resistance to Both Fungal and Bacterial Pathogens in Rice and Arabidopsis

  • Choi, Min-Seon;Heu, Sunggi;Paek, Nam-Chon;Koh, Hee-Jong;Lee, Jung-Sook;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.364-372
    • /
    • 2012
  • Xanthomonas oryzae pv. oryzae causing bacterial leaf blight disease in rice produces and secretes Hpa1 protein that belongs to harpin protein family. Previously it was reported that Hpa1 induced defense responses when it was produced in tobacco. In this study, we expressed hpa1 gene in rice and Arabidopsis to examine the effects of Hpa1 expression on disease resistance to both fungal and bacterial pathogens. Expression of hpa1 gene in rice enhanced disease resistance to both X. oryzae pv. oryzae and Magnaporthe grisea. Interestingly, individual transgenic rice plants could be divided into four groups, depending on responses to both pathogens. hpa1 expression in Arabidopsis also enhanced disease resistance to both Botrytis cineria and Xanthomonas campestris pv. campestris. To examine genes that are up-regulated in the transgenic rice plants after inoculation with X. oryzae pv. oryzae, known defense-related genes were assessed, and also microarray analysis with the Rice 5 K DNA chip was performed. Interestingly, expression of OsACS1 gene, which was found as the gene that showed the highest induction, was induced earlier and stronger than that in the wild type plant. These results indicate that hpa1 expression in the diverse plant species, including monocot and dicot, can enhance disease resistance to both fungal and bacterial plant pathogens.

Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses

  • Samra Mirzayeva;Irada Huseynova;Canan Yuksel Ozmen;Ali Ergul
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.466-485
    • /
    • 2023
  • Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

  • Hwang, In Sun;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1), which is associated with fumonisin B1 bio-synthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

Identification of a Pathogen-Induced Glycine max Transcription Factor GmWRKY1

  • Kang, Sang-Gu;Park, Eui-Ho;Do, Kum-Sook
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.381-388
    • /
    • 2009
  • On screening pathogen-resistant soybean, we identified a WRKY type transcription factor named a Glycine max WRKY1 (GmWRKY1). Expression of GmWRKY1 gene was induced in the soybean sprout by Pseudomonas infection. The GmWRKY1 was expressed in all of the tissues with high levels in stems, leaves and developing seeds. The protein Gm WRKY1 contains highly conserved two WRKY DNA-binding domains having two $C_2-H_2$ zinc-finger motif ($C-X_{4-5}-C-X_{22-23}-H-X-H$) in its N-terminal and C-terminal amino acid sequences. In electrophoresis mobility shift assay, the GmWRKY1 protein bound specifically to W-box elements in the promoters of defense related genes. These results demonstrated that GmWRKY1 is one of the soybean WRKY family genes and the plant-specific transcription factors for defense processes.

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Systemic Resistance and Expression of the Pathogenesis-Related Genes Mediated by the Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens EXTN-1 Against Anthracnose Disease in Cucumber

  • Park, Kyung-Seok;Ahn, Il-Pyung;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. To obtain plant growth-promoting rhizobacteria inducing resistance against cucumber anthracnose by Colletotrichum orbiculare, more than 800 strains of rhizobacteria were screened in the greenhouse. Among these strains, Bacillus amyloliquefaciens solate EXTN-1 showed significant disease control efficacy on the plants. Induction of pathogenesis-related(PR-la) gene expression by EXTN-1 was assessed using tobacco plants transformed with PR-1a::$\beta$-glucuronidase(GUS) construct. GUS activities of tobacco treated with EXTN-1 and salicylic acid-treated transgenic tobacco were significantly higher than those of tobacco plants with other treatments. Gene expression analyses indicated that EXTN-1 induces the accumulation of defense-related genes of tobacco. The results showed that some defense genes are expressed by the treatment with EXTN-1 suggesting the similar resistance mechanism by salicylic acid.

  • PDF

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF