Browse > Article
http://dx.doi.org/10.5423/PPJ.2005.21.2.149

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway  

Lee, Joo-Hee (Department of Molecular Biology, Sejong University)
Kim, Sun-Hyung (Research Institute of Agricultural Resources, Ishikawa Agricultural College)
Jung, Young-Ho (Department of Molecular Biology, Sejong University)
Kim, Jung-A (Department of Molecular Biology, Sejong University)
Lee, Mi-Ok (Department of Molecular Biology, Sejong University)
Choi, Pil-Gyu (Department of Molecular Biology, Sejong University)
Choi, Woo-Bong (Departments of Biotechnology and Bioengineering/Biomaterial Control, Dongeui University)
Kim, Kyung-Nam (Department of Molecular Biology, Sejong University)
Jwa, Nam-Soo (Department of Molecular Biology, Sejong University)
Publication Information
The Plant Pathology Journal / v.21, no.2, 2005 , pp. 149-157 More about this Journal
Abstract
A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.
Keywords
Benzo(1,2,3)-thiadiazole-7-carbothioic acid Smethyl ester (BTH); Magnaporthe grisea; Oryza sativa L.; OsNDR1; system acquired resistance (SAR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coppinger, P., Repetti, P. P., Day, B., Dahlbeck, D., Mehlert, A. and Staskwicz, B. J. 2004. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial resistance in Arabidopsis thaliana. Plant J. 40:225-237   DOI   ScienceOn
2 Hoekema, A., Hirsch, P. R., Hooykaas, P. J.J. and Schilperoort, Z. A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180   DOI
3 Kiyosawa, S. 1982. Genetic and epidemiological modeling of breakdown of plant disease resistence. Annu. Rev. Phytopathol. 20:93-117   DOI   ScienceOn
4 Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16:223-233   DOI   ScienceOn
5 Mindrinos, M., Katagiri, F., Yu, G. L. and Ausubel, F. M. 1994. The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089-1099   DOI   ScienceOn
6 Ritter, C. and Dangl, J. L. 1995. The avrRPm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabodopsis. Mol. Plant Microbe Interact. 8:444-453   DOI   ScienceOn
7 Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358   DOI   ScienceOn
8 Sonnhammer, E. L. L., von Heijne, G and Krogh, A 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, eds (Menlo Park, CA: American Association for Artificial Intelligence Press), pp. 175-182
9 Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527-1540   DOI   ScienceOn
10 Jwa, N. S., Agrawal, G K., Rakwal, R., Park, C. H. and Agrawal, V. P. 2001. Molecular cloning and characterization of novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem. Biophys. Res. Commun. 286:973-983   DOI   ScienceOn
11 Kyte.J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132   DOI
12 Warren, R. F., Henk, A., Mowery, P., Holub, E. and Innes, R. W. 1998. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439-1452   DOI   ScienceOn
13 Puri, N., Jenner, C., Bennett, M., Stewart, R., Mansfield, J., Lyons, N. and Taylor, J. 1997. Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol. Plant Microbe Interact. 10:247-256   DOI   ScienceOn
14 Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49-59   DOI   ScienceOn
15 Agrawal, G. K., Rakwal, R. and Iwahashi, H. 2002b. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAPkinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 294: 1009-1016   DOI   ScienceOn
16 Century, K. S., Shapiro, A. D., Repetti, P. P., Dahlbeck, D., Holub, E. and Staskawicz, B. J. 1997. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965   DOI   PUBMED   ScienceOn
17 Simonich, M. T. and Innes, R. W. 1995. A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. Phaseolicola. Mol. Plant Microbe Interact. 8:637-640   DOI   ScienceOn
18 Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206   DOI   ScienceOn
19 Malamy. J. E. and Benfey, P. N. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33-44   PUBMED
20 Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315   DOI   ScienceOn
21 Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-82   DOI   ScienceOn
22 Metraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006   DOI   PUBMED   ScienceOn
23 Dilbirligi, M., Erayrnan, M., Sandhu, D., Sidhu, D. and Gill, K. S. 2004. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461-481   DOI   ScienceOn
24 Hemerly, A. S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and lnze, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711-1723   DOI   ScienceOn
25 Friedrich, L., Kawton, K., Ruess, W., Masner, P., Specker, N., Rella, G. M., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistence in tobacco. Plant J. 10:61-70   DOI   ScienceOn
26 Delaney, T, Friedrich, L., Kessmann, H., Uknes, S., Vemooij, B., Ward, E., Weymann, K. and Ryals, J. 1994. The molecular biology of systemic acquired resistance. In Advances in Molecular Genetics of Plant-Microbe Interactions, volume 3 (Daniels, M.ed.). Dordrecht: Ktuwer Academic Publishers, pp.339-347
27 Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2002a. Effects of signaling molecules, protein phosphatase inhibitors, and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipids hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227-236   DOI   ScienceOn
28 Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B. J. 1994. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860   DOI   PUBMED
29 Innes, R. W., Bent, A. F., Kunkel, B. N., Bisgrove, S. R. and Staskawicz, B. J. 1993. Molecular analysis of avirulence gene avrRpt2 and indentification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859-4869   DOI
30 Dubrovsky, J. G., Doerner, P., Colen-Carmona, A. and Rost, T. L. 2000. Pericycle cell proliferation and lateral root initiation in Arabidopsis thaliana. Plant Physiol. 124: 1648-1657   DOI   ScienceOn
31 Bilang, R. and Bogorad, L. 1996. Light-dependent developmental control of rbcS gene expression in epidermal cells of maize leaves. Plant Mol. Biol. 31 :831-841   DOI   ScienceOn
32 Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854-860   DOI   ScienceOn
33 Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2001. Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defense/stress response. Plant Physiol. Biochem. 39:1095-1103   DOI   ScienceOn
34 Clough, S. J. and Bent, A. F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743   DOI   ScienceOn
35 Grant, M. R., Godiard, L., Straube, E., Ashfield, T, Lewald, J., Sattler, A., Innes, R. W. and Dangle, J. L. 1995. Structure of the Arabidopsos RPM1 gene enabling dual specificity disease resistance. Science 269:843-846   DOI   PUBMED   ScienceOn
36 Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567-580   DOI   ScienceOn