Browse > Article
http://dx.doi.org/10.5423/PPJ.2009.25.2.193

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis  

Jeon, Eun-Hee (Department of Genetic Engineering, Dong-A University)
Chung, Eun-Sook (Department of Genetic Engineering, Dong-A University)
Lee, Hye-Young (Department of Genetic Engineering, Dong-A University)
Pak, Jung-Hun (Department of Genetic Engineering, Dong-A University)
Kim, Hye-Jeong (Department of Genetic Engineering, Dong-A University)
Lee, Jai-Heon (Department of Genetic Engineering, Dong-A University)
Moon, Byung-Ju (Department of Applied Biology, Dong-A University)
Jeung, Ji-Ung (National Crop Experiment Station, Rural Development Administration)
Shin, Sang-Hyun (Department of Agronomy and Plant Genetics, University of Minnesota)
Chung, Young-Soo (Department of Genetic Engineering, Dong-A University)
Publication Information
The Plant Pathology Journal / v.25, no.2, 2009 , pp. 193-198 More about this Journal
Abstract
A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.
Keywords
Botrytis cinerea; glycine-rich cell wall protein; Oryza grandiglumis; resistance; wild rice;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Hooft, van Huijsduijnen R. A. M., van Loon, L. C. and Bol, J. F. 1986. cDNA cloning of six mRNAs induced by TMV infection of tobacco and a characterization of their translation products. EMBO J. 5:2057-2061   PUBMED
2 Keller, B., Templeton, M. D. and Lamb, C. J. 1989. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc. Natl. Acad. Sci. USA 86: 1529-1533   DOI   ScienceOn
3 Lin, W. C., Cheng, M. L., Wu, J. W., Yang, N. S. and Cheng, C. P. 2005. A glycine-rich protein gene family predominantly expressed in tomato roots, but not in leaves and ripe fruit. Plant Sci. 168:283-295   DOI   ScienceOn
4 Luo, M., Lin, L. H., Hill, R. D. and Mohapatra, S. S. 1991. Primary structure of an environmental stress and abscisic acidinducible alfalfa protein. Plant Mol. Biol. 17: 1267-1269   DOI   ScienceOn
5 Reddy, A. S. N. and Poovaiah, B. W. 1987. Accumulation of a glycine-rich protein in auxin-deprived strawberry fruits. Bio-Chem. Biophys. Res. Commun. 147:885-891   DOI   ScienceOn
6 Sachetto-Martins, G., Franco, L. O. and de Oliveira, A. D. 2000. Plant glycine rich-proteins, a gene family or just a common motif? Biochim. Biophys. Acta 1492:1-14   DOI   PUBMED   ScienceOn
7 Thomma, B. P., Eggermont, K., Penninckx, I. A, Mauch-Mani, B., Vogelsang, R., Cammue, B. P. and Broekaert, W. F 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111   DOI   ScienceOn
8 Thompson, J. D., Gibson, T. J., Plewniak, F, Jeanmougin, F. and Higgins, D. G 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:44876-44882   DOI
9 de Oliveira, D. E., Seurinck, J., Inze, D., Van Montagu, M. and Botterman, J. 1990. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427-436   DOI   ScienceOn
10 Kyte, J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132   DOI   PUBMED
11 Molina, A., Mena, M., Carbonero, P. and Garcia-Olmedo, F. 1997. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33:803-810   DOI   ScienceOn
12 Vaughan, D. A 1994. The wild relatives of rice-a genetic resources handbook. p. 3-24. IRRI, Manila, Philipines
13 Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743   DOI   ScienceOn
14 Fang, R. X., Pang, Z., Gao, D. M., Mang, K. Q. and Chua, N. H. 1991. cDNA sequences of a virus-inducible, glycine-rich protein gene from rice. Plant Mol. Biol. 17: 1255-1257   DOI   ScienceOn
15 Kim, B. R., Nam, H. Y., Kim, S. U., Kim, S. I. and Chang, Y. J. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol. Lett. 25: 1869-1872   DOI   ScienceOn
16 Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. $\beta$-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517-523   DOI   ScienceOn
17 Elad, Y. 1997. Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol. Rev. Comb. Philos. Soc. 72:381-422   DOI   ScienceOn
18 Jeon, E. H., Chung, E. S., Pak, J. H., Nam, J. S., Cho, S. K., Shin, S. H., Kim, D. H., Kim, G. T., Lee, J. H., Kang, K. H. and Chung, Y. S. 2008. Overexpression of OgPAE1 from wild rice confers fimgal resistance against Botrytis cinerea. J. Plant Res. 121:435-440   DOI   ScienceOn
19 Cassab, G. I. 1998. Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:281-309   DOI   PUBMED   ScienceOn
20 Keller, B. 1993. Structural cell wall proteins. Plant Physiol. 101:1127-1130   DOI   PUBMED
21 Pawlowski, K., Twigg, P., Dobritsa, S., Guan, C. and Mullin, B. C. 1997. A nodule-specific gene family from Alnus glutinosa encodes glycine- and histidine-rich proteins expressed in the early stages of actinorhizal nodule development. Mol. Plant-Microbe Interact. 10: 656-664   DOI   ScienceOn
22 MacKintosh, C., Lyon, G. D. and MacKintosh, R. W. 1994. Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. Plant J. 5:137-147   DOI   ScienceOn
23 Wyatt, S. E. and Carpita, N. C. 1993. The plant-cytoskeleton-cellwall continuum. Trends Cell Biol. 3 :413-417   DOI   ScienceOn
24 Kim, K. M., Cho, S. K., Shin, S. H., Kim, G. T., Lee, J. H., Oh, B. J., Kang, K. H., Hong, J. C., Choi, J. Y., Shin, J. S. and Chung, Y. S. 2005. Analysis of differentially expressed transcripts of fimgal elicitor- and wound-treated wild rice (Oryza grandiglumis). J. Plant Res. 118:347-354   DOI   ScienceOn
25 Rakwal, R., Kumar Agrawal, G. and Jwa, N. S. 2001. Characterization of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene 263:189-198   DOI   PUBMED   ScienceOn
26 Nicolas, C., Rodriguez, D., Poulsen, F., Eriksen, E. N. and Niicolas, G 1997. The expression of an abscisic acid-responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol. 38:1303-1310   DOI   PUBMED   ScienceOn
27 Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., Lee, S. H., Sachetto-Martins, G. and Park, O. K. 2001. Interaction of the Arabidopsis receptor protein kinase Wak 1 with a glycine rich protein, AtGRP 3. J. Biol. Chem. 276:26688-26693   DOI   ScienceOn
28 Showalter, A M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9-23   DOI   ScienceOn
29 Kaldenhoff, R. and Richter, G. 1989. Sequence of cDNA for a novel light induced glycine-rich protein. Nucleic Acids Res. 17:2853   DOI   ScienceOn
30 Lu, Y. Y, Liu, Y. H. and Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP i-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci. 172:913-919   DOI   ScienceOn
31 Prins, T. W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., ten Have, A., Hansen, M. E., Tenberge, K. and van Kan, J. A. L. 2000. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Fungal Pathology, ed. by J. W. Kronstad, p.33-64. Kluwer Academic Publishers. Dordrecht, The Netherlands